POLYNOMIAL RELATIONS FOR BOUNDS ON THE EXPONENTS IN SOLUTIONS TO OPERATOR EQUATIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A general approach to finding the indicial polynomials for differential, difference, and q-difference operators is discussed. The structure of such a polynomial corresponding to the product of operators is considered.

About the authors

S. A. Abramov

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Email: sergeyabramov@mail.ru
Moscow, Russia

A. A. Ryabenko

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Email: anna.ryabenko@gmail.com
Moscow, Russia

References

  1. Abramov S.A. On the multiplicative property of indicial polynomials // Comput. Math. Math. Phys. (in press)
  2. Coddington E.A., Levinson N. Theory of Ordinary Differential Equations. New York: McGraw-Hill, 1955
  3. Davenport J., Siret Y., Tournier E. Calcul formel. Paris: Masson, 1987
  4. Abramov S.A. Problems of computer algebra involved in the search for polynomial solutions of linear differential and difference equations // Moscow Univ. Comput. Math. and Cybernet, 1989, no. 3, pp. 63–68
  5. Petkovsek M. Finding closed-form solutions of difference equations by symbolic methods. Ph.D. Dissertation. Carnegie Mellon University, USA. Order Number: UMI Order No. GAX91-33361. 1991.
  6. Abramov S.A. Elements of Computer Algebra and Linear Ordinary Differential, Difference, and Difference Operators, Moscow: Mosk. Tsentr Nepreryvnogo Mat. Obrazovaniya, 2012 [in Russian].
  7. Abramov S., Bronstein M., Petkovsek M. On polynomial solutions of linear operator equations // ISSAC’95 Proceedings. 1995. P. 290–295.
  8. Abramov S., Petkovsek M., Ryabenko A. Special formal series solutions of linear operator equations // Discrete Math. 2000. V. 210. P. 3–25.
  9. Khmelnov D.E. Basis selection in solving linear functional equations // Program. Comput. Software, 2002, vol. 28, no. 2. pp. 102–105.
  10. Khmelnov D.E. Search for polynomial solutions of linear functional systems by means of induced recurrences // Program. Comput. Software, 2004, vol. 30, no. 2, pp. 61–67.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).