N4-(ω-Aminoalkyl)- and N4-(ω-Dansylaminoalkyl)-5-methyl-2'-deoxycytidines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New derivatives of N4-(dodecyl)-5-methyl-2'-deoxycytidine containing terminal amino groups at the end of an alkyl linker have been synthesized. It is shown that they are convenient syntones for the subsequent introduction of dansyl fluorophore groups. One of the N4-ω-dansylaminoalkyl derivatives has showed moderate antibacterial activity against the Mycobacterium smegmatis strain. This derivative can be used to study the subcellular localization of this kind of compounds.

About the authors

D. A Makarov

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Email: dmitmakarov_97@mail.ru
Moscow, Russia

M. V Jasko

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Moscow, Russia

I. L Karpenko

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Moscow, Russia

Y. V Tkachev

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Moscow, Russia

B. F Vasilyeva

Gause Institute of New Antibiotics

Moscow, Russia

O. V Efremenkova

Gause Institute of New Antibiotics

Moscow, Russia

S. N Kochetkov

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Moscow, Russia

L. A Alexandrova

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Moscow, Russia

References

  1. De Clercq E. // Curr. Opin. Virol. 2012. V. 2. P. 572–579. https://doi.org/10.1016/j.coviro.2012.07.004
  2. Shelton J., Lu X., Hollenbaugh J.A., Cho J.H., Amblard F., Schinazi R.F. // Chem. Rev. 2016. V. 116. P. 14379–14455. https://doi.org/10.1021/acs.chemrev.6b00209
  3. Alexandrova L.A., Khandazhinskaya A.L., Matyugina E.S., Makarov D.A., Kochetkov S.N. // Microorganisms. 2022. V. 10. P. 1299. https://doi.org/10.3390/microorganisms10071299
  4. Yssel A.E.J., Vanderleyden J., Steenackers H.P. // J. Antimicrob. Chemother. 2017. V. 72. P. 2156–2170. https://doi.org/10.1093/jac/dlx151
  5. Jordheim L.P., Durantel D., Zoulin F., Dumontet C. // Nat. Rev. Drug Discov. 2013. V. 12. P. 447–464. https://doi.org/10.1038/nrd4010
  6. Osada H. // J. Antibiot. (Tokyo). 2019. V. 72. P. 855–864. https://doi.org/10.1038/s41429-019-0237-1
  7. Bugg T.D.H., Kerr R.V. // J. Antibiot. (Tokyo). 2019. V. 72. P. 865–876. https://doi.org/10.1038/s41429-019-0227-3
  8. Serpi M., Ferrari V., Pertusati F. // J. Med. Chem. 2016. V. 59. P. 10343–10382. https://doi.org/10.1021/acs.jmedchem.6b00325
  9. Ferrari V., Serpi M. // Future Med. Chem. 2015. V. 7. P. 291–314. https://doi.org/10.4155/fmc.14.166
  10. Alexandrova L.A., Jasko M.V., Negrya S.D., Solyev P.N., Shevchenko O.V., Solodinin A.P., Kolonitskaya D.P., Karpenko I.L., Efremenkova O.V., Glukhova A.A., Boykova Y.V., Efimenko T.A., Kost N.V., Avdanina D.A., Nuraeva G.K., Volkov I.A., Kochetkov S.N., Zhgun. A.A. // Eur. J. Med. Chem. 2021. V. 215. P. 113212. https://doi.org/10.1016/j.ejmech.2021.113212
  11. Alexandrova L.A., Shevchenko O.V., Jasko M.V., Solyev P.N., Karpenko I.L., Negrya S.D., Efremenkova O.V., Vasilieva B.F., Efimenko T.A., Avdanina D.A., Nuraeva G.K., Potapov M.P., Kukushkina V.I., Kochetkov S.N., Zhgun A.A. // New J. Chem. 2022. V. 46. P. 5614–5626. https://doi.org/10.1039/D1NJ04312A
  12. Alexandrova L.A., Oskolsky I.A., Makarov D.A., Jasko M.V., Karpenko I.L., Efemenkova O.V., Vasilyeva B.F., Avdanina D.A., Ermolyuk, A.A., Benko, E.E., Kalinin S.G., Kolganova T.V., Berzina M.Y., Konstantinova I.D., Chizhov A.O., Kochetkov S.N., Zhgun A.A. // Int. J. Mol. Sci. 2024. V. 25. P. 3053. https://doi.org/10.3390/jims25053053
  13. Ostroumova O.S., Efimova S.S., Zlodeeva P.D., Alexandrova L.A., Makarov D.A., Matyugina E.S., Sokhraneva V.A., Khandazhinskaya A.L., Kochetkov S.N. // Pharmaceutics. 2024. V. 16. P. 1110. https://doi.org/10.3390/pharmaceutics16091110
  14. Canique T., Muller S., Rodriguez R. // Nat. Rev. Chem. 2018. V. 2. P. 202–215. https://doi.org/10.1038/s41570-018-0030-x
  15. Divakar K.J., Reese C.B. // J. Chem. Soc., Perkin Trans. 1. 1982. P. 1171–1176. https://doi.org/10.1039/P19820001171
  16. Lin T.S., Gao Y.S., Mancini W.R. // J. Med. Chem. 1983. V. 26. P. 1691–1696. https://doi.org/10.1021/jm00366a006
  17. Nikš M., Otto M. // J. Immunol. Methods. 1990. V. 130. P. 149–151. https://doi.org/10.1016/0022-1759(90)90309-j
  18. Negrya S.D., Jasko M.V., Solyev P.N., Karpenko I.L., Efemenkova O.V., Vasilyeva B.F., Sumarnkova I.G., Kochetkov S.N., Alexandrova L.A. // J. Antibiot. (Tokyo). 2020. V. 73. P. 236–246. https://doi.org/10.1038/s41429-019-0273-x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).