N4-(ω-Aminoalkyl)- and N4-(ω-Dansylaminoalkyl)-5-methyl-2'-deoxycytidines

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

New derivatives of N4-(dodecyl)-5-methyl-2'-deoxycytidine containing terminal amino groups at the end of an alkyl linker have been synthesized. It is shown that they are convenient syntones for the subsequent introduction of dansyl fluorophore groups. One of the N4-ω-dansylaminoalkyl derivatives has showed moderate antibacterial activity against the Mycobacterium smegmatis strain. This derivative can be used to study the subcellular localization of this kind of compounds.

Sobre autores

D. Makarov

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Email: dmitmakarov_97@mail.ru
Moscow, Russia

M. Jasko

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Moscow, Russia

I. Karpenko

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Moscow, Russia

Y. Tkachev

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Moscow, Russia

B. Vasilyeva

Gause Institute of New Antibiotics

Moscow, Russia

O. Efremenkova

Gause Institute of New Antibiotics

Moscow, Russia

S. Kochetkov

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Moscow, Russia

L. Alexandrova

Engelhardt Institute of Molecular Biology Russian Academy of Sciences

Moscow, Russia

Bibliografia

  1. De Clercq E. // Curr. Opin. Virol. 2012. V. 2. P. 572–579. https://doi.org/10.1016/j.coviro.2012.07.004
  2. Shelton J., Lu X., Hollenbaugh J.A., Cho J.H., Amblard F., Schinazi R.F. // Chem. Rev. 2016. V. 116. P. 14379–14455. https://doi.org/10.1021/acs.chemrev.6b00209
  3. Alexandrova L.A., Khandazhinskaya A.L., Matyugina E.S., Makarov D.A., Kochetkov S.N. // Microorganisms. 2022. V. 10. P. 1299. https://doi.org/10.3390/microorganisms10071299
  4. Yssel A.E.J., Vanderleyden J., Steenackers H.P. // J. Antimicrob. Chemother. 2017. V. 72. P. 2156–2170. https://doi.org/10.1093/jac/dlx151
  5. Jordheim L.P., Durantel D., Zoulin F., Dumontet C. // Nat. Rev. Drug Discov. 2013. V. 12. P. 447–464. https://doi.org/10.1038/nrd4010
  6. Osada H. // J. Antibiot. (Tokyo). 2019. V. 72. P. 855–864. https://doi.org/10.1038/s41429-019-0237-1
  7. Bugg T.D.H., Kerr R.V. // J. Antibiot. (Tokyo). 2019. V. 72. P. 865–876. https://doi.org/10.1038/s41429-019-0227-3
  8. Serpi M., Ferrari V., Pertusati F. // J. Med. Chem. 2016. V. 59. P. 10343–10382. https://doi.org/10.1021/acs.jmedchem.6b00325
  9. Ferrari V., Serpi M. // Future Med. Chem. 2015. V. 7. P. 291–314. https://doi.org/10.4155/fmc.14.166
  10. Alexandrova L.A., Jasko M.V., Negrya S.D., Solyev P.N., Shevchenko O.V., Solodinin A.P., Kolonitskaya D.P., Karpenko I.L., Efremenkova O.V., Glukhova A.A., Boykova Y.V., Efimenko T.A., Kost N.V., Avdanina D.A., Nuraeva G.K., Volkov I.A., Kochetkov S.N., Zhgun. A.A. // Eur. J. Med. Chem. 2021. V. 215. P. 113212. https://doi.org/10.1016/j.ejmech.2021.113212
  11. Alexandrova L.A., Shevchenko O.V., Jasko M.V., Solyev P.N., Karpenko I.L., Negrya S.D., Efremenkova O.V., Vasilieva B.F., Efimenko T.A., Avdanina D.A., Nuraeva G.K., Potapov M.P., Kukushkina V.I., Kochetkov S.N., Zhgun A.A. // New J. Chem. 2022. V. 46. P. 5614–5626. https://doi.org/10.1039/D1NJ04312A
  12. Alexandrova L.A., Oskolsky I.A., Makarov D.A., Jasko M.V., Karpenko I.L., Efemenkova O.V., Vasilyeva B.F., Avdanina D.A., Ermolyuk, A.A., Benko, E.E., Kalinin S.G., Kolganova T.V., Berzina M.Y., Konstantinova I.D., Chizhov A.O., Kochetkov S.N., Zhgun A.A. // Int. J. Mol. Sci. 2024. V. 25. P. 3053. https://doi.org/10.3390/jims25053053
  13. Ostroumova O.S., Efimova S.S., Zlodeeva P.D., Alexandrova L.A., Makarov D.A., Matyugina E.S., Sokhraneva V.A., Khandazhinskaya A.L., Kochetkov S.N. // Pharmaceutics. 2024. V. 16. P. 1110. https://doi.org/10.3390/pharmaceutics16091110
  14. Canique T., Muller S., Rodriguez R. // Nat. Rev. Chem. 2018. V. 2. P. 202–215. https://doi.org/10.1038/s41570-018-0030-x
  15. Divakar K.J., Reese C.B. // J. Chem. Soc., Perkin Trans. 1. 1982. P. 1171–1176. https://doi.org/10.1039/P19820001171
  16. Lin T.S., Gao Y.S., Mancini W.R. // J. Med. Chem. 1983. V. 26. P. 1691–1696. https://doi.org/10.1021/jm00366a006
  17. Nikš M., Otto M. // J. Immunol. Methods. 1990. V. 130. P. 149–151. https://doi.org/10.1016/0022-1759(90)90309-j
  18. Negrya S.D., Jasko M.V., Solyev P.N., Karpenko I.L., Efemenkova O.V., Vasilyeva B.F., Sumarnkova I.G., Kochetkov S.N., Alexandrova L.A. // J. Antibiot. (Tokyo). 2020. V. 73. P. 236–246. https://doi.org/10.1038/s41429-019-0273-x

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).