THERMODYNAMIC CHARACTERISTICS OF COMPLEX FORMATION OF L-LYSINE WITH ISOMERS OF PYRIDINEMONOCARBOXYLIC ACID IN AQUEOUS SOLUTION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The interactions of the polar basic amino acid L-lysine (Lys) with structural isomers of pyridine monocarboxylic acid: picolinic (PA), nicotinic (NA) and isonicotinic (INA) acids in an aqueous solution were studied by solution calorimetry at 298.15 K. The experimental data allowed us to establish the formation of Lys complexes with the indicated isomers with a stoichiometry of 1:1. The thermodynamic parameters were determined: binding constants, enthalpies of complex formation, Gibbs energies and entropies. The stability of the formed complexes depends on the structural isomerism of pyridine carboxylic acid and increases in the series: PA < NA < INA. It was shown that the main contribution to the stabilization of the formed complexes is made by the enthalpic component of the Gibbs free energy of complex formation.

Sobre autores

E. Tyunina

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: tey@isc-ras.ru
Ivanovo, Russia

I. Mezhevoi

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: tey@isc-ras.ru
Ivanovo, Russia

Bibliografia

  1. Hu B., Yuan Y., Yan Y. et al. // Mater. Sci. Eng. C. 2017. V. 75. P. 637. http://dx.doi.org/10.1016/j.msec.2017.02.106
  2. Kaplan S., Colak M., Hosgoren H.et al. // ACS Omega. 2019. V. 4. P. 12342. doi: 10.1021/acsomega.9b01086
  3. Esmaeilpour D., Hussein A.A., Almalki F.A. et al. // Heliyon 2020. V. 6. P. e03360. https://doi.org/10.1016/j.heliyon.2020.e03360
  4. Zhanga L., Yana P., Lia Y. et al. // Industr. Crops. Products 2020. V. 145. P. 112126. https://doi.org/10.1016/j.indcrop.2020.112126
  5. Ashton L.A., Bullock J. // J. Chem. Soc., Faraday Trans. 1982. V. 1. № 78. P. 1177.
  6. Tyunina E. Yu., Badelin V.G. // J. Solution Chem. 2016. V. 45. P. 475.
  7. Asgharzadeh S., Shareghi B., Farhadian S. // Inter. J. Biolog. Macromol. 2019. V. 131. P. 548.
  8. Rao D.R.M., Rawat N., Sawant R.M. et al. // J. Chem. Thermodynamics 2012. V. 55. P. 64. http://dx.doi.org/10.1016/j.jct.2012.06.017
  9. Ivanov E.V., Lebedeva E.Yu., Kravchenko A.N. // J. Chem. Thermodynamics. 2017. V. 115. P. 148.
  10. Waghmare M.D., Wasewar K.L., Sonawane Sh.S. et al. // Separ. Purif. Techn. 2013. V. 120. P. 296. http://dx.doi.org/10.1016/j.seppur.2013.10.019
  11. Kumar A., Chane P.S. // Sens. Actuators B: Chem. 2019. V. 281. P. 933. doi: 10.1016/j.snb.2018.11.023
  12. Tao M., Zhu M., Wu Ch., Hi Zh. // Asian J. Pharm. Sci. 2015. V. 10. P. 57. doi: 10.1016/j.ajps.2014.08.012
  13. Bregier-Jarzebowska R., Hoffmann S.K., Lomozik L. et al. // Polyhedron. 2019. V. 173. P. 114137. doi: 10.1016/j.poly.2019.114137
  14. Seifriz I., Konzen M., Paula M.M.S. et al. // J. Inorg. Biochem. 1999. V. 76. P. 153.
  15. Kumari A., Gupta V., Gaur A., Kumar S. // Chem. Eng. Processing: Process Intensif. 2022. V. 174. P. 108896. https://doi.org/10.1016/j.cep.2022.108896
  16. Takusagawa F., Shimada A. // Acta Cryst. B1976. V. 32. P. 1925.
  17. Zhang Y., Gao X., Fang W. et al. // J. Mol. Struct. 2021. V. 1233. P. 130048.
  18. Sarkar N., Gonnella N.C., Krawiec M. et al. // Cryst. Growth. Des. 2020. V. 20. P. 7320.
  19. Gille A., Bodor E.T., Ahmed K. et al. // Annu. Rev. Pharmacol. Toxicol. 2008. V. 48. P. 79.
  20. Zhang Y. // Annu. Rev. Pharmacol. Toxicol. 2005. V. 45. P. 529.
  21. Pabba S., Kumari A., Ravuri M.G. et al. // J. Mol. Liq. 2020. V. 314. P. 113657.
  22. El-Dean A.M.K., Abd-Ella A.A., Hassanien R. et al. // ACS Omega 2019. V. 4. P. 8406.
  23. Gamov G.A., Kiselev A.N., Alexsandriiskii V.V. et al. // J. Mol. Liq. 2017. V. 242. P. 1148.
  24. Terekhova I.V., Obukhova N.A. // J. Solution Chem. 2005. V. 34. P. 1273. doi: 10.1007/s10953-005-8018-9
  25. Tyunina E. Yu., Krutova O.N., Lytkin A.I., Dunaeva V.V. //. J. Chem. Thermodynamics 2022. V. 171. P. 106809. https://doi.org/10.1016/j.jct.2022.106809
  26. Усачева Т.Р., Шарнин В.А. // Изв. АН. Сер. химическая. 2015. Т. № 15. С. 2536.
  27. Kumar H., Kaur K. // J. Mol. Liq. 2012. V. 173. P. 130.
  28. Kumar H., Behal I. // J. Chem. Thermodynamics 2016. V. 102. P. 48.
  29. Badelin V.G., Tyunina E. Yu., Mezhevoi I.N. // Russ. J. Appl. Chem. 2007. V. 80. P. 711.
  30. Smirnov V.I., Badelin V.G. // Thermochim. Acta. 2015. V. 606. P. 41.
  31. Wadso I., Goldberg R.N. // Pure Appl. Chem. 2001. V. 73. P. 1625.
  32. Parker V.B. Thermal Properties of Univalent Electrolytes. V. 2. Nat. Stand. Ref. Data Ser. Nat. Bur. Stand., US Gov., Washington, DC2, 1965. P. 66.
  33. Archer D.G. // Phys. Chem. Ref. Data. 1999. V. 28. P. 1. doi: 10.1063/1.556034
  34. Badelin V.G., Smirnov V.I., Mezhevoi I.N. // Russ. J. Phys. Chem. 2002. V. 76. P. 1299.
  35. Badelin V.G., Smirnov V.I. // Russ. J. Phys. Chem. 2010. V. 84. P. 1163.
  36. Pałecz B. // J. Therm. Anal. Calorim. 1998. V. 54. P. 257.
  37. Piekarski H., Nowicka B. // J. Therm. Anal. Calorim. 2010. V. 102. P. 31.
  38. Pałecz B., Piekarski H., Romanowski S. // J. Mol. Liquid. 2000. V. 84. P. 279.
  39. Mishelevich A., Apelblat A. // J. Chem. Thermodynamics. 2008. V. 40. P. 897. doi: 10.1016/j.jct.2007.12.006
  40. Pałecz B., Smok A. // J. Therm. Anal. Cal. 2013. V. 111. P. 917. doi: 10.1007/s10973-012-2278-6
  41. Dunal J., Buczkowski A., Waliszewski D. et al. // J. Mol. Liq. 2018. V. 265. P. 135. https://doi.org/10.1016/j.molliq.2018.05.131
  42. Lutkin A.I., Chernikov V.V., Krutova O.N. et al. // J. Therm. Anal. Cal. 2017. V. 130. P. 457. doi: 10.1007/s10973-017-6134-6
  43. Zittle C.A., Schmidt C.L.A. // J. Biol. Chem. 1935. V. 105. P. 161.
  44. Tyunina E.Yu., Mezhevoi I.N., Stavnova A.A. // J. Chem. Thermodynamics 2021. C. 161. P. 106552. doi: 10.1016/j.jct.2021.106552
  45. Chemistry and Biochemistry of the Amino Acids / Ed. By G.C. Barret. London-N.Y.: Chapman and Hall, 1985
  46. Tyunina E.Yu., Krutova O.N., Lytkin A.I. et al. // J. Chem. Thermodynamics. 2022. V. 171. P. 106809. https://doi.org/10.1016/j.jct.2022.106809
  47. Лыткин А.И., Баделин В.Г., Крутова О.Н. и др. // Журн. общ. химии. 2019. Т. 89. № 11. С. 1719.
  48. Lytkin A.I., Badelin V.G., Krutova O.N. et al. // Russ. J. Gen. Chem. 2019. V. 89. P. 2235 doi: 10.1134/S1070363219110124.
  49. Tyunina E.Yu., Mezhevoi I.N., Stavnova A.A. // J. Mol. Liq. 2021. V. 329. P. 115568. https://doi.org/10.1016/j.molliq.2021.115568
  50. Tyunina E. Yu., Mezhevoi I.N. // J. Chem. Thermodynamics 2023. V. 180. P. 107020. https://doi.org/10.1016/j.jct.2023.107020
  51. Tyunina E.Yu., Mezhevoi I.N. // Russ. J. Phys. Chem. A. 2024. V. 98. No. 13. P. 3100—3106. doi: 10.1134/S0036024424702340
  52. Barannikov V.P., Badelin V.G., Venediktov E.A. et al. // Russ. J. Phys. Chem. A. 2011. V. 85. P. 16.
  53. Borodin V.A., Vasil’ev V.P., Kozlovsky E.V. // Mathematical Problems of Chemical Thermodynamics. Novosibirsk: Nauka,1985. Р. 219.
  54. Meshkov A.N., Gamov G.A. // Russ. J. Phys. Chem. A. 2023. V. 97. No. 2. P. 323. doi: 10.1134/S0036024423020164. [Журн.физ. химии. 2023. Т. 97. № 2. С. 204.]
  55. Nagal H., Kuwabara K., Carta G. // J. Chem. Eng. Data. 2008. V. 53. P. 619. https://doi.org/10.1021/je700067a
  56. Ashton L.A., Bullock J. // J. Chem. Soc., Faraday Trans. 11982. V. 78. P. 1177.
  57. Ross P.D., Subramanian S. // Biochemistry. 1981. V. 20. P. 3096. https://doi.org/10.1021/bi00514a017
  58. Castronuovo G., Niccoli M., Varriale L. // Tetrahedron. 2007. V. 63. P. 7047. doi: 10.1016/j.tet.2007.05.014

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).