THERMODYNAMIC CHARACTERISTICS OF COMPLEX FORMATION OF L-LYSINE WITH ISOMERS OF PYRIDINEMONOCARBOXYLIC ACID IN AQUEOUS SOLUTION
- Authors: Tyunina E.Y.1, Mezhevoi I.N1
-
Affiliations:
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences
- Issue: Vol 99, No 10 (2025)
- Pages: 1497-1504
- Section: PHYSICAL CHEMISTRY OF SOLUTIONS
- Submitted: 27.01.2026
- Published: 15.10.2025
- URL: https://ogarev-online.ru/0044-4537/article/view/376377
- DOI: https://doi.org/10.7868/S3034553725100062
- ID: 376377
Cite item
Abstract
The interactions of the polar basic amino acid L-lysine (Lys) with structural isomers of pyridine monocarboxylic acid: picolinic (PA), nicotinic (NA) and isonicotinic (INA) acids in an aqueous solution were studied by solution calorimetry at 298.15 K. The experimental data allowed us to establish the formation of Lys complexes with the indicated isomers with a stoichiometry of 1:1. The thermodynamic parameters were determined: binding constants, enthalpies of complex formation, Gibbs energies and entropies. The stability of the formed complexes depends on the structural isomerism of pyridine carboxylic acid and increases in the series: PA < NA < INA. It was shown that the main contribution to the stabilization of the formed complexes is made by the enthalpic component of the Gibbs free energy of complex formation.
About the authors
E. Yu Tyunina
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: tey@isc-ras.ru
Ivanovo, Russia
I. N Mezhevoi
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Email: tey@isc-ras.ru
Ivanovo, Russia
References
- Hu B., Yuan Y., Yan Y. et al. // Mater. Sci. Eng. C. 2017. V. 75. P. 637. http://dx.doi.org/10.1016/j.msec.2017.02.106
- Kaplan S., Colak M., Hosgoren H.et al. // ACS Omega. 2019. V. 4. P. 12342. doi: 10.1021/acsomega.9b01086
- Esmaeilpour D., Hussein A.A., Almalki F.A. et al. // Heliyon 2020. V. 6. P. e03360. https://doi.org/10.1016/j.heliyon.2020.e03360
- Zhanga L., Yana P., Lia Y. et al. // Industr. Crops. Products 2020. V. 145. P. 112126. https://doi.org/10.1016/j.indcrop.2020.112126
- Ashton L.A., Bullock J. // J. Chem. Soc., Faraday Trans. 1982. V. 1. № 78. P. 1177.
- Tyunina E. Yu., Badelin V.G. // J. Solution Chem. 2016. V. 45. P. 475.
- Asgharzadeh S., Shareghi B., Farhadian S. // Inter. J. Biolog. Macromol. 2019. V. 131. P. 548.
- Rao D.R.M., Rawat N., Sawant R.M. et al. // J. Chem. Thermodynamics 2012. V. 55. P. 64. http://dx.doi.org/10.1016/j.jct.2012.06.017
- Ivanov E.V., Lebedeva E.Yu., Kravchenko A.N. // J. Chem. Thermodynamics. 2017. V. 115. P. 148.
- Waghmare M.D., Wasewar K.L., Sonawane Sh.S. et al. // Separ. Purif. Techn. 2013. V. 120. P. 296. http://dx.doi.org/10.1016/j.seppur.2013.10.019
- Kumar A., Chane P.S. // Sens. Actuators B: Chem. 2019. V. 281. P. 933. doi: 10.1016/j.snb.2018.11.023
- Tao M., Zhu M., Wu Ch., Hi Zh. // Asian J. Pharm. Sci. 2015. V. 10. P. 57. doi: 10.1016/j.ajps.2014.08.012
- Bregier-Jarzebowska R., Hoffmann S.K., Lomozik L. et al. // Polyhedron. 2019. V. 173. P. 114137. doi: 10.1016/j.poly.2019.114137
- Seifriz I., Konzen M., Paula M.M.S. et al. // J. Inorg. Biochem. 1999. V. 76. P. 153.
- Kumari A., Gupta V., Gaur A., Kumar S. // Chem. Eng. Processing: Process Intensif. 2022. V. 174. P. 108896. https://doi.org/10.1016/j.cep.2022.108896
- Takusagawa F., Shimada A. // Acta Cryst. B1976. V. 32. P. 1925.
- Zhang Y., Gao X., Fang W. et al. // J. Mol. Struct. 2021. V. 1233. P. 130048.
- Sarkar N., Gonnella N.C., Krawiec M. et al. // Cryst. Growth. Des. 2020. V. 20. P. 7320.
- Gille A., Bodor E.T., Ahmed K. et al. // Annu. Rev. Pharmacol. Toxicol. 2008. V. 48. P. 79.
- Zhang Y. // Annu. Rev. Pharmacol. Toxicol. 2005. V. 45. P. 529.
- Pabba S., Kumari A., Ravuri M.G. et al. // J. Mol. Liq. 2020. V. 314. P. 113657.
- El-Dean A.M.K., Abd-Ella A.A., Hassanien R. et al. // ACS Omega 2019. V. 4. P. 8406.
- Gamov G.A., Kiselev A.N., Alexsandriiskii V.V. et al. // J. Mol. Liq. 2017. V. 242. P. 1148.
- Terekhova I.V., Obukhova N.A. // J. Solution Chem. 2005. V. 34. P. 1273. doi: 10.1007/s10953-005-8018-9
- Tyunina E. Yu., Krutova O.N., Lytkin A.I., Dunaeva V.V. //. J. Chem. Thermodynamics 2022. V. 171. P. 106809. https://doi.org/10.1016/j.jct.2022.106809
- Усачева Т.Р., Шарнин В.А. // Изв. АН. Сер. химическая. 2015. Т. № 15. С. 2536.
- Kumar H., Kaur K. // J. Mol. Liq. 2012. V. 173. P. 130.
- Kumar H., Behal I. // J. Chem. Thermodynamics 2016. V. 102. P. 48.
- Badelin V.G., Tyunina E. Yu., Mezhevoi I.N. // Russ. J. Appl. Chem. 2007. V. 80. P. 711.
- Smirnov V.I., Badelin V.G. // Thermochim. Acta. 2015. V. 606. P. 41.
- Wadso I., Goldberg R.N. // Pure Appl. Chem. 2001. V. 73. P. 1625.
- Parker V.B. Thermal Properties of Univalent Electrolytes. V. 2. Nat. Stand. Ref. Data Ser. Nat. Bur. Stand., US Gov., Washington, DC2, 1965. P. 66.
- Archer D.G. // Phys. Chem. Ref. Data. 1999. V. 28. P. 1. doi: 10.1063/1.556034
- Badelin V.G., Smirnov V.I., Mezhevoi I.N. // Russ. J. Phys. Chem. 2002. V. 76. P. 1299.
- Badelin V.G., Smirnov V.I. // Russ. J. Phys. Chem. 2010. V. 84. P. 1163.
- Pałecz B. // J. Therm. Anal. Calorim. 1998. V. 54. P. 257.
- Piekarski H., Nowicka B. // J. Therm. Anal. Calorim. 2010. V. 102. P. 31.
- Pałecz B., Piekarski H., Romanowski S. // J. Mol. Liquid. 2000. V. 84. P. 279.
- Mishelevich A., Apelblat A. // J. Chem. Thermodynamics. 2008. V. 40. P. 897. doi: 10.1016/j.jct.2007.12.006
- Pałecz B., Smok A. // J. Therm. Anal. Cal. 2013. V. 111. P. 917. doi: 10.1007/s10973-012-2278-6
- Dunal J., Buczkowski A., Waliszewski D. et al. // J. Mol. Liq. 2018. V. 265. P. 135. https://doi.org/10.1016/j.molliq.2018.05.131
- Lutkin A.I., Chernikov V.V., Krutova O.N. et al. // J. Therm. Anal. Cal. 2017. V. 130. P. 457. doi: 10.1007/s10973-017-6134-6
- Zittle C.A., Schmidt C.L.A. // J. Biol. Chem. 1935. V. 105. P. 161.
- Tyunina E.Yu., Mezhevoi I.N., Stavnova A.A. // J. Chem. Thermodynamics 2021. C. 161. P. 106552. doi: 10.1016/j.jct.2021.106552
- Chemistry and Biochemistry of the Amino Acids / Ed. By G.C. Barret. London-N.Y.: Chapman and Hall, 1985
- Tyunina E.Yu., Krutova O.N., Lytkin A.I. et al. // J. Chem. Thermodynamics. 2022. V. 171. P. 106809. https://doi.org/10.1016/j.jct.2022.106809
- Лыткин А.И., Баделин В.Г., Крутова О.Н. и др. // Журн. общ. химии. 2019. Т. 89. № 11. С. 1719. Lytkin A.I., Badelin V.G., Krutova O.N. et al. // Russ. J. Gen. Chem. 2019. V. 89. P. 2235 doi: 10.1134/S1070363219110124
- Tyunina E.Yu., Mezhevoi I.N., Stavnova A.A. // J. Mol. Liq. 2021. V. 329. P. 115568. https://doi.org/10.1016/j.molliq.2021.115568
- Tyunina E. Yu., Mezhevoi I.N. // J. Chem. Thermodynamics 2023. V. 180. P. 107020. https://doi.org/10.1016/j.jct.2023.107020
- Tyunina E.Yu., Mezhevoi I.N. // Russ. J. Phys. Chem. A. 2024. V. 98. No. 13. P. 3100—3106. doi: 10.1134/S0036024424702340
- Barannikov V.P., Badelin V.G., Venediktov E.A. et al. // Russ. J. Phys. Chem. A. 2011. V. 85. P. 16.
- Borodin V.A., Vasil’ev V.P., Kozlovsky E.V. // Mathematical Problems of Chemical Thermodynamics. Novosibirsk: Nauka,1985. Р. 219.
- Meshkov A.N., Gamov G.A. // Russ. J. Phys. Chem. A. 2023. V. 97. No. 2. P. 323. doi: 10.1134/S0036024423020164. [Журн.физ. химии. 2023. Т. 97. № 2. С. 204.]
- Nagal H., Kuwabara K., Carta G. // J. Chem. Eng. Data. 2008. V. 53. P. 619. https://doi.org/10.1021/je700067a
- Ashton L.A., Bullock J. // J. Chem. Soc., Faraday Trans. 11982. V. 78. P. 1177.
- Ross P.D., Subramanian S. // Biochemistry. 1981. V. 20. P. 3096. https://doi.org/10.1021/bi00514a017
- Castronuovo G., Niccoli M., Varriale L. // Tetrahedron. 2007. V. 63. P. 7047. doi: 10.1016/j.tet.2007.05.014
Supplementary files


