Gradient-Free Two-Point Methods for Solving Stochastic Nonsmooth Convex Optimization Problems with Small Non-Random Noises
- 作者: Bayandina A.S.1,2, Gasnikov A.V.1,3, Lagunovskaya A.A.1
-
隶属关系:
- Moscow Institute of Physics and Technology (National Research University)
- Skolkovo University of Science and Technology
- Kharkevich Institute for Information Transmission Problems
- 期: 卷 79, 编号 8 (2018)
- 页面: 1399-1408
- 栏目: Stochastic Systems
- URL: https://ogarev-online.ru/0005-1179/article/view/150978
- DOI: https://doi.org/10.1134/S0005117918080039
- ID: 150978
如何引用文章
详细
We study nonsmooth convex stochastic optimization problems with a two-point zero-order oracle, i.e., at each iteration one can observe the values of the function’s realization at two selected points. These problems are first smoothed out with the well-known technique of double smoothing (B.T. Polyak) and then solved with the stochastic mirror descent method. We obtain conditions for the permissible noise level of a nonrandom nature exhibited in the computation of the function’s realization for which the estimate on the method’s rate of convergence is preserved.
作者简介
A. Bayandina
Moscow Institute of Physics and Technology (National Research University); Skolkovo University of Science and Technology
编辑信件的主要联系方式.
Email: anast.bayandina@gmail.com
俄罗斯联邦, Moscow; Moscow
A. Gasnikov
Moscow Institute of Physics and Technology (National Research University); Kharkevich Institute for Information Transmission Problems
Email: anast.bayandina@gmail.com
俄罗斯联邦, Moscow; Moscow
A. Lagunovskaya
Moscow Institute of Physics and Technology (National Research University)
Email: anast.bayandina@gmail.com
俄罗斯联邦, Moscow
补充文件
