Gradient-Free Two-Point Methods for Solving Stochastic Nonsmooth Convex Optimization Problems with Small Non-Random Noises


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study nonsmooth convex stochastic optimization problems with a two-point zero-order oracle, i.e., at each iteration one can observe the values of the function’s realization at two selected points. These problems are first smoothed out with the well-known technique of double smoothing (B.T. Polyak) and then solved with the stochastic mirror descent method. We obtain conditions for the permissible noise level of a nonrandom nature exhibited in the computation of the function’s realization for which the estimate on the method’s rate of convergence is preserved.

作者简介

A. Bayandina

Moscow Institute of Physics and Technology (National Research University); Skolkovo University of Science and Technology

编辑信件的主要联系方式.
Email: anast.bayandina@gmail.com
俄罗斯联邦, Moscow; Moscow

A. Gasnikov

Moscow Institute of Physics and Technology (National Research University); Kharkevich Institute for Information Transmission Problems

Email: anast.bayandina@gmail.com
俄罗斯联邦, Moscow; Moscow

A. Lagunovskaya

Moscow Institute of Physics and Technology (National Research University)

Email: anast.bayandina@gmail.com
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018