Gradient-Free Two-Point Methods for Solving Stochastic Nonsmooth Convex Optimization Problems with Small Non-Random Noises


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study nonsmooth convex stochastic optimization problems with a two-point zero-order oracle, i.e., at each iteration one can observe the values of the function’s realization at two selected points. These problems are first smoothed out with the well-known technique of double smoothing (B.T. Polyak) and then solved with the stochastic mirror descent method. We obtain conditions for the permissible noise level of a nonrandom nature exhibited in the computation of the function’s realization for which the estimate on the method’s rate of convergence is preserved.

Авторлар туралы

A. Bayandina

Moscow Institute of Physics and Technology (National Research University); Skolkovo University of Science and Technology

Хат алмасуға жауапты Автор.
Email: anast.bayandina@gmail.com
Ресей, Moscow; Moscow

A. Gasnikov

Moscow Institute of Physics and Technology (National Research University); Kharkevich Institute for Information Transmission Problems

Email: anast.bayandina@gmail.com
Ресей, Moscow; Moscow

A. Lagunovskaya

Moscow Institute of Physics and Technology (National Research University)

Email: anast.bayandina@gmail.com
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018