Mathematical Foundations of the Golden Rule. II. Dynamic Case
- Авторы: Zhukovskiy V.I.1, Smirnova L.V.2, Gorbatov A.S.1
-
Учреждения:
- Moscow State University
- Razumovsky State University of Technologies and Management (the First Cossack University)
- Выпуск: Том 79, № 10 (2018)
- Страницы: 1929-1952
- Раздел: Mathematical Game Theory and Applications
- URL: https://ogarev-online.ru/0005-1179/article/view/151060
- DOI: https://doi.org/10.1134/S0005117918100156
- ID: 151060
Цитировать
Аннотация
This paper extends the earlier research of the Golden Rule in the static case [2] to the dynamic one. The main idea is to use the Germeier convolution of the payoff functions of players within the framework of antagonistic positional differential games in quasi motions and guiding control.
Ключевые слова
Об авторах
V. Zhukovskiy
Moscow State University
Автор, ответственный за переписку.
Email: zhkvlad@yandex.ru
Россия, Moscow
L. Smirnova
Razumovsky State University of Technologies and Management (the First Cossack University)
Email: zhkvlad@yandex.ru
Россия, Moscow
A. Gorbatov
Moscow State University
Email: zhkvlad@yandex.ru
Россия, Moscow
Дополнительные файлы
