Some Problems Related to Completely Monotone Positive Definite Functions
- Авторы: Zastavnyi V.P.1
-
Учреждения:
- Donetsk National University
- Выпуск: Том 106, № 1-2 (2019)
- Страницы: 212-228
- Раздел: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151823
- DOI: https://doi.org/10.1134/S0001434619070253
- ID: 151823
Цитировать
Аннотация
This paper deals with several problems related to functions of the class \({\mathcal C}{\mathcal M}\) of completely monotone functions and functions of the class Φ(E) of positive definite functions on a real linear space E. Theorem 1 verifies some conjectures of Moak related to the complete monotonicity of the function x−μ (x2+ 1)−ν. Theorem 2 states that if f ∈ C∞(0, + ∞) and δ ∈ ℝ, then
if and only if \( - \delta f\left( x \right) - xf\prime \left( x \right)\; \in \;{\cal C}{\cal M}\). A similar result for functions in Φ(E) is obtained in Theorem 9: if ε ∈ ℝ and a function h:[0, + ∞) → ℝ is continuous on [0, +œ) and differentiable on the interval (0, + œ) and satisfies the condition xh′ (x) → 0 as x → +0, then
if and only if ψε(p(u)) ∈ Φ(E), where ipε(x):= εh(x) − xh′(x) for x > 0 and ψε(0): = εh(0). Here p is a nonnegative homogeneous function on E and p(u) ≢ 0. It is proved (Example 6) that: (1) e−α∥u∥ (1 − β∥u∥) ∈ Φ(ℝm) if and only if −α ≤ β ≤ a/m;(2) e−α∥u∥2 (1 − β∥u∥2) ∈ Φ(ℝm) if and only if 0 ≤ β ≤ 2α/m. Here ∥u∥ is the Euclidean norm on ℝm. Theorem 11 deals with the case of radial positive definite functions hμ,ν.
Об авторах
V. Zastavnyi
Donetsk National University
Автор, ответственный за переписку.
Email: zastavn@rambler.ru
Украина, Donetsk, 340055
Дополнительные файлы
