Some Problems Related to Completely Monotone Positive Definite Functions


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper deals with several problems related to functions of the class \({\mathcal C}{\mathcal M}\) of completely monotone functions and functions of the class Φ(E) of positive definite functions on a real linear space E. Theorem 1 verifies some conjectures of Moak related to the complete monotonicity of the function x−μ (x2+ 1)−ν. Theorem 2 states that if fC(0, + ∞) and δ ∈ ℝ, then

\(f\left( x \right) - {a^\delta }f\left( {ax} \right)\; \in \;{\mathcal C}{\mathcal M}\;\;\;\;\;\;{\rm{for}}\;{\rm{all}}\;\;\;\;a > 1\)

if and only if \( - \delta f\left( x \right) - xf\prime \left( x \right)\; \in \;{\cal C}{\cal M}\). A similar result for functions in Φ(E) is obtained in Theorem 9: if ε ∈ ℝ and a function h:[0, + ∞) → ℝ is continuous on [0, +œ) and differentiable on the interval (0, + œ) and satisfies the condition xh′ (x) → 0 as x → +0, then

\(h\left( {\rho \left( u \right)} \right) - {a^{ - \varepsilon }}h\left( {a\rho \left( u \right)} \right)\; \in \;{\rm{\Phi }}\left( E \right)\;\;\;\;\;\;{\rm{for}}\;{\rm{all}}\;\;\;\;a > 1\)

if and only if ψε(p(u)) ∈ Φ(E), where ipε(x):= εh(x) − xh(x) for x > 0 and ψε(0): = εh(0). Here p is a nonnegative homogeneous function on E and p(u) ≢ 0. It is proved (Example 6) that: (1) e−α∥u (1 − β∥u∥) ∈ Φ(ℝm) if and only if −α ≤ β ≤ a/m;(2) e−α∥u∥2 (1 − β∥u2) ∈ Φ(ℝm) if and only if 0 ≤ β ≤ 2α/m. Here ∥u∥ is the Euclidean norm on ℝm. Theorem 11 deals with the case of radial positive definite functions hμ,ν.

Авторлар туралы

V. Zastavnyi

Donetsk National University

Хат алмасуға жауапты Автор.
Email: zastavn@rambler.ru
Украина, Donetsk, 340055

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019