Some Problems Related to Completely Monotone Positive Definite Functions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper deals with several problems related to functions of the class \({\mathcal C}{\mathcal M}\) of completely monotone functions and functions of the class Φ(E) of positive definite functions on a real linear space E. Theorem 1 verifies some conjectures of Moak related to the complete monotonicity of the function x−μ (x2+ 1)−ν. Theorem 2 states that if fC(0, + ∞) and δ ∈ ℝ, then

\(f\left( x \right) - {a^\delta }f\left( {ax} \right)\; \in \;{\mathcal C}{\mathcal M}\;\;\;\;\;\;{\rm{for}}\;{\rm{all}}\;\;\;\;a > 1\)

if and only if \( - \delta f\left( x \right) - xf\prime \left( x \right)\; \in \;{\cal C}{\cal M}\). A similar result for functions in Φ(E) is obtained in Theorem 9: if ε ∈ ℝ and a function h:[0, + ∞) → ℝ is continuous on [0, +œ) and differentiable on the interval (0, + œ) and satisfies the condition xh′ (x) → 0 as x → +0, then

\(h\left( {\rho \left( u \right)} \right) - {a^{ - \varepsilon }}h\left( {a\rho \left( u \right)} \right)\; \in \;{\rm{\Phi }}\left( E \right)\;\;\;\;\;\;{\rm{for}}\;{\rm{all}}\;\;\;\;a > 1\)

if and only if ψε(p(u)) ∈ Φ(E), where ipε(x):= εh(x) − xh(x) for x > 0 and ψε(0): = εh(0). Here p is a nonnegative homogeneous function on E and p(u) ≢ 0. It is proved (Example 6) that: (1) e−α∥u (1 − β∥u∥) ∈ Φ(ℝm) if and only if −α ≤ β ≤ a/m;(2) e−α∥u∥2 (1 − β∥u2) ∈ Φ(ℝm) if and only if 0 ≤ β ≤ 2α/m. Here ∥u∥ is the Euclidean norm on ℝm. Theorem 11 deals with the case of radial positive definite functions hμ,ν.

作者简介

V. Zastavnyi

Donetsk National University

编辑信件的主要联系方式.
Email: zastavn@rambler.ru
乌克兰, Donetsk, 340055

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019