Современный взгляд на проблему нетоз-ассоциированных заболеваний

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Нейтрофильные гранулоциты играют важную роль в реализации врожденного иммунитета. В 2004 г. было открыто явление нетоза, сопровождающееся выделением нейтрофильных внеклеточных ловушек (NETs). С тех пор накопилось большое количество исследований об их строении и функциях при патологических состояниях. Целью данного обзора является освещение научных достижений в области исследования нетоза. Оценен вклад NETs в патогенез альтерации тканей, воспаления и тромбоэмболических осложнений. Выделены основные нетоз-ассоциированные заболевания, при которых повышена концентрация циркулирующих компонентов NETs, таких как внеклеточная ДНК, миелопероксидаза, нейтрофильная эластаза и гистоны. Обобщены основные сведения об успешности применения терапевтических препаратов, разрушающих структуры NETs. Показана диагностическая и прогностическая ценность выявления NETs в развитии широкого круга заболеваний. Изложенный материал подчеркивает необходимость изучения нетоз-ассоциированных заболеваний как перспективное направление для практической деятельности врача.

Об авторах

Юлия Эдуардовна Доброхотова

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: pr.dobrohotova@mail.ru
ORCID iD: 0000-0003-2786-6181

д.м.н., профессор

Россия, Москва

Екатерина Игоревна Боровкова

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: Katyanikitina@mail.ru
ORCID iD: 0000-0001-7140-262X
SPIN-код: 8897-8605

д.м.н., доцент

Россия, Москва

Владислава Игоревна Клаушук

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: doc.klaushuk@mail.ru
ORCID iD: 0009-0005-8515-6446
SPIN-код: 6479-8529

аспирант

Россия, Москва

Наталья Викторовна Низяева

Российский научный центр хирургии имени академика Б.В. Петровского

Email: niziaeva@gmail.com
ORCID iD: 0000-0001-5592-5690
SPIN-код: 9893-2630

д.м.н.

Россия, Москва

Ксения Александровна Артемьева

Российский научный центр хирургии имени академика Б.В. Петровского

Email: artemjeva_ksenia@mail.ru
ORCID iD: 0000-0002-1014-752X
SPIN-код: 2057-7745

к.м.н., ведущий научный сотрудник

Россия, Москва

Алина Николаевна Яковлева

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Автор, ответственный за переписку.
Email: A_L_I_N_A_0505@mail.ru
ORCID iD: 0009-0009-9235-7384

ординатор

Россия, Москва

Список литературы

  1. Brinkmann V. Neutrophil Extracellular Traps in the Second Decade. J Innate Immun. 2018;10(5-6):414–421. doi: https://doi.org/10.1159/000489829
  2. Ravindran M, Khan MA, Palaniyar N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules. 2019;9(8):365. doi: https://doi.org/10.3390/biom9080365
  3. Воробьева Н.В. Нейтрофильные внеклеточные ловушки: новые аспекты // Вестник Московского университета. Серия 16. Биология. — 2020. — Т. 75. — № 4. — С. 210–225. [Vorobjeva NV. Neutrophil extracellular traps: new aspects. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(4):210–225. (In Russ.)].
  4. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–147. doi: https://doi.org/10.1038/nri.2017.105
  5. Zhu CL, Wang Y, Liu Q, et al. Dysregulation of neutrophil death in sepsis. Front Immunol. 2022;13:963955. doi: https://doi.org/10.3389/fimmu.2022.963955
  6. Noreng S, Ota N, Sun Y, et al. Structure of the core human NADPH oxidase NOX2. Nat Commun. 2022;13(1):6079. doi: https://doi.org/10.1038/s41467-022-33711-0
  7. Poli V, Zanoni I. Neutrophil intrinsic and extrinsic regulation of NETosis in health and disease. Trends Microbiol. 2023;31(3):280–293. doi: https://doi.org/10.1016/j.tim.2022.10.002
  8. Guillotin F, Fortier M, Portes M, et al. Vital NETosis vs. suicidal NETosis during normal pregnancy and preeclampsia. Front Cell Dev Biol. 2023;10:1099038. doi: https://doi.org/10.3389/fcell.2022.1099038
  9. Thiam HR, Wong SL, Wagner DD, et al. Cellular Mechanisms of NETosis. Annu Rev Cell Dev Biol. 2020;36:191–218. doi: https://doi.org/10.1146/annurev-cellbio-020520-111016
  10. Tatsiy O, McDonald PP. Physiological Stimuli Induce PAD4-Dependent, ROS-Independent NETosis, With Early and Late Events Controlled by Discrete Signaling Pathways. Front Immunol. 2018;9:2036. doi: https://doi.org/10.3389/fimmu.2018.02036
  11. Majewski P, Majchrzak-Gorecka M, Grygier B, et al. Inhibitors of Serine Proteases in Regulating the Production and Function of Neutrophil Extracellular Traps. Front Immunol. 2016;7:261. doi: https://doi.org/10.3389/fimmu.2016.00261
  12. Gupta AK, Hasler P, Holzgreve W, et al. Neutrophil NETs: a novel contributor to preeclampsia-associated placental hypoxia? Semin Immunopathol. 2007;29(2):163–167. doi: https://doi.org/10.1007/s00281-007-0073-4
  13. Döring Y, Soehnlein O, Weber C. Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ Res. 2017;120(4):736–743. doi: https://doi.org/10.1161/CIRCRESAHA.116.309692
  14. Moser G, Guettler J, Forstner D, et al. Maternal Platelets — Friend or Foe of the Human Placenta? Int J Mol Sci. 2019;20(22):5639. doi: https://doi.org/10.3390/ijms20225639
  15. Pfeiler S, Stark K, Massberg S, et al. Propagation of thrombosis by neutrophils and extracellular nucleosome networks. Haematologica. 2017;102(2):206–213. doi: https://doi.org/10.3324/haematol.2016.142471
  16. Xu X, Wu Y, Xu S, et al. Clinical significance of neutrophil extracellular traps biomarkers in thrombosis. Thromb J. 2022;20(1):63. doi: https://doi.org/10.1186/s12959-022-00421-y
  17. Zhu S, Yu Y, Qu M, et al. Neutrophil extracellular traps contribute to immunothrombosis formation via the STING pathway in sepsis-associated lung injury. Cell Death Discov. 2023;9(1):315. doi: https://doi.org/10.1038/s41420-023-01614-8
  18. Warnatsch A, Ioannou M, Wang Q, et al. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349(6245):316–320. doi: https://doi.org/10.1126/science.aaa8064
  19. Molinaro R, Yu M, Sausen G, et al. Targeted delivery of protein arginine deiminase-4 inhibitors to limit arterial intimal NETosis and preserve endothelial integrity. Cardiovasc Res. 2021;117(13):2652–2663. doi: https://doi.org/10.1093/cvr/cvab074
  20. Zhu S, Yu Y, Qu M, et al. Neutrophil extracellular traps contribute to immunothrombosis formation via the STING pathway in sepsis-associated lung injury. Cell Death Discov. 2023;9(1):315. doi: https://doi.org/10.1038/s41420-023-01614-8
  21. Tóth E, Beinrohr L, Gubucz I, et al. Fibrin to von Willebrand factor ratio in arterial thrombi is associated with plasma levels of inflammatory biomarkers and local abundance of extracellular DNA. Thromb Res. 2022;209:8–15. doi: https://doi.org/10.1016/j.thromres.2021.11.011
  22. Borissoff JI, Joosen IA, Versteylen MO, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol. 2013;33(8):2032–2040. doi: https://doi.org/10.1161/ATVBAHA.113.301627
  23. Maugeri N, Campana L, Gavina M, et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 2014;12(12):2074–2088. doi: https://doi.org/10.1111/jth.12710
  24. Ge L, Zhou X, Ji WJ, et al. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am J Physiol Heart Circ Physiol. 2015;308(5):H500-9. doi: https://doi.org/10.1152/ajpheart.00381.2014
  25. Laridan E, Denorme F, Desender L, et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol. 2017;82(2):223–232. doi: https://doi.org/10.1002/ana.24993
  26. Essig F, Kollikowski AM, Pham M, et al. Immunohistological analysis of neutrophils and neutrophil extracellular traps in human thrombemboli causing acute ischemic stroke. Int J Mol Sci. 2020;21(19):7387. doi: https://doi.org/10.3390/ijms21197387
  27. Zhou P, Li T, Jin J, et al. Interactions between neutrophil extracellular traps and activated platelets enhance procoagulant activity in acute stroke patients with ICA occlusion. EBioMedicine. 2020;53:102671. doi: https://doi.org/10.1016/j.ebiom.2020.102671
  28. de Vries JJ, Autar ASA, van Dam-Nolen DHK, et al. Association between plaque vulnerability and neutrophil extracellular traps (NETs) levels: The Plaque at RISK study. PLoS One. 2022;17(6):e0269805. doi: https://doi.org/10.1371/journal.pone.0269805
  29. Donkel SJ, Wolters FJ, Ikram MA, et al. Circulating Myeloperoxidase (MPO)-DNA complexes as marker for Neutrophil Extracellular Traps (NETs) levels and the association with cardiovascular risk factors in the general population. PLoS One. 2021;16(8):e0253698. doi: https://doi.org/10.1371/journal.pone.0253698
  30. Sabbatini M, Bona E, Novello G, et al. Aging hampers neutrophil extracellular traps (NETs) efficacy. Aging Clin Exp Res. 2022;34(10):2345–2353. doi: https://doi.org/10.1007/s40520-022-02201-0
  31. Martos L, Oto J, Fernández-Pardo Á, et al. Increase of Neutrophil Activation Markers in Venous Thrombosis-Contribution of Circulating Activated Protein C. Int J Mol Sci. 2020;21(16):5651. doi: https://doi.org/10.3390/ijms21165651
  32. Zhou Y, Tao W, Shen F, et al. The Emerging Role of Neutrophil Extracellular Traps in Arterial, Venous and Cancer-Associated Thrombosis. Front Cardiovasc Med. 2021;8:786387. doi: https://doi.org/10.3389/fcvm.2021.786387
  33. Cugno M, Meroni PL, Gualtierotti R, et al. Complement activation in patients with COVID-19: A novel therapeutic target. J Allergy Clin Immunol. 2020;146(1):215–217. doi: https://doi.org/10.1016/j.jaci.2020.05.006
  34. Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV- 2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12):e20201129. doi: https://doi.org/10.1084/jem.20201129
  35. Leppkes M, Knopf J, Naschberger E, et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 2020;58:102925. doi: https://doi.org/10.1016/j.ebiom.2020.102925
  36. Ackermann M, Anders HJ, Bilyy R, et al. Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death Differ. 2021;28(11):3125–3139. doi: https://doi.org/10.1038/s41418-021-00805-z
  37. Mai SHC, Khan M, Dwivedi DJ, et al. Delayed but not early treatment with DNase reduces organ damage and improves outcome in a murine model of sepsis. Shock. 2015;44(2):166–172. doi: https://doi.org/10.1097/SHK.0000000000000396
  38. Boufenzer A, Carrasco K, Jolly L, et al. Potentiation of NETs release is novel characteristic of TREM-1 activation and the pharmacological inhibition of TREM-1 could prevent from the deleterious consequences of NETs release in sepsis. Cell Mol Immunol. 2021;18(2):452–460. doi: https://doi.org/10.1038/s41423-020-00591-7
  39. Yu AP, Tam BT, Yau WY, et al. Association of endothelin-1 and matrix metallopeptidase-9 with metabolic syndrome in middle-aged and older adults. Diabetol Metab Syndr. 2015;7:111. doi: https://doi.org/10.1186/s13098-015-0108-2
  40. van der Velden S, van Osch TLJ, Seghier A, et al. Complement activation drives antibody-mediated transfusion-related acute lung injury via macrophage trafficking and formation of NETs. Blood. 2024;143(1):79–91. doi: https://doi.org/10.1182/blood.2023020484
  41. Scozzi D, Liao F, Krupnick AS, et al. The role of neutrophil extracellular traps in acute lung injury. Front Immunol. 2022;13:953195. doi: https://doi.org/10.3389/fimmu.2022.953195
  42. Poto R, Loffredo S, Palestra F, et al. Angiogenesis, Lymphangiogenesis, and Inflammation in Chronic Obstructive Pulmonary Disease (COPD): Few Certainties and Many Outstanding Questions. Cells. 2022;11(10):1720. doi: https://doi.org/10.3390/cells11101720
  43. Papayannopoulos V, Staab D, Zychlinsky A. Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PLoS One. 2011;6(12):e28526. doi: https://doi.org/10.1371/journal.pone.0028526
  44. Dinallo V, Marafini I, Di Fusco D, et al. Neutrophil Extracellular Traps Sustain Inflammatory Signals in Ulcerative Colitis. J Crohns Colitis. 2019;13(6):772–784. doi: https://doi.org/10.1093/ecco-jcc/jjy215
  45. Zhou GX, Liu ZJ. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J Dig Dis. 2017;18(9):495–503. doi: https://doi.org/10.1111/1751-2980.12540
  46. Lu H, Lin J, Xu C, et al. Cyclosporine modulates neutrophil functions via the SIRT6-HIF-1α-glycolysis axis to alleviate severe ulcerative colitis. Clin Transl Med. 2021;11(2):e334. doi: https://doi.org/10.1002/ctm2.334
  47. Kapel N, Ouni H, Benahmed NA, et al. Fecal Calprotectin for the Diagnosis and Management of Inflammatory Bowel Diseases. Clin Transl Gastroenterol. 2023;14(9):e00617. doi: https://doi.org/10.14309/ctg.0000000000000617
  48. Fa P, Ke BG, Dupre A, et al. The implication of neutrophil extracellular traps in nonalcoholic fatty liver disease. Front Immunol. 2023;14:1292679. doi: https://doi.org/10.3389/fimmu.2023.1292679
  49. Казимирский А.Н., Салмаси Ж.М., Порядин Г.В., и др. Новые возможности диагностики и исследования патогенеза различных видов воспаления // Патологическая физиология и экспериментальная терапия. — 2022. — Т. 66. — № 2. — С. 34–42. [Kazimirskii AN, Salmasi JM, Poryadin GV, et al. New opportunities for diagnosis and investigation of the pathogenesis of various types of inflammation. Patologicheskaya Fiziologiya i Eksperimental`naya terapiya. (Pathological Physiology and Experimental Therapy, Russian Journal). 2022;66(2):34–42. (In Russ.)] doi: https://doi.org/10.25557/0031-2991.2022.02.34-42
  50. Lee KH, Kronbichler A, Park DD, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev. 2017;16(11):1160–1173. doi: https://doi.org/10.1016/j.autrev.2017.09.012
  51. Bruschi M, Bonanni A, Petretto A, et al. Neutrophil Extracellular Traps Profiles in Patients with Incident Systemic Lupus Erythematosus and Lupus Nephritis. J Rheumatol. 2020;47(3):377–386. doi: https://doi.org/10.3899/jrheum.181232
  52. Moore S, Juo HH, Nielsen CT, et al. Role of Neutrophil Extracellular Traps Regarding Patients at Risk of Increased Disease Activity and Cardiovascular Comorbidity in Systemic Lupus Erythematosus. J Rheumatol. 2020;47(11):1652–1660. doi: https://doi.org/10.3899/jrheum.190875
  53. Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194–211. doi: https://doi.org/10.1007/s12016-020-08804-7
  54. Salemme R, Peralta LN, Meka SH, et al. The Role of NETosis in Systemic Lupus Erythematosus. J Cell Immunol. 2019;1(2):33–42. doi: https://doi.org/10.33696/immunology.1.008
  55. Kumar SV, Kulkarni OP, Mulay SR, et al. Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN. J Am Soc Nephrol. 2015;26(10):2399–2413. doi: https://doi.org/10.1681/ASN.2014070673
  56. Wu X, You D, Pan M, et al. Knockout of the C3a receptor protects against renal ischemia reperfusion injury by reduction of NETs formation. Cell Mol Life Sci. 2023;80(11):322. doi: https://doi.org/10.1007/s00018-023-04967-6
  57. Vecchio F, Lo Buono N, Stabilini A, et al. Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight. 2018;3(18):e122146. doi: https://doi.org/10.1172/jci.insight.122146
  58. Skoglund C, Appelgren D, Johansson I, et al. Increase of Neutrophil Extracellular Traps, Mitochondrial DNA and Nuclear DNA in Newly Diagnosed Type 1 Diabetes Children but Not in High-Risk Children. Front Immunol. 2021;12:628564. doi: https://doi.org/10.3389/fimmu.2021.628564
  59. Aukrust SG, Holte KB, Opstad TB, et al. NETosis in Long-Term Type 1 Diabetes Mellitus and Its Link to Coronary Artery Disease. Front Immunol. 2022;12:799539. doi: https://doi.org/10.3389/fimmu.2021.799539
  60. Njeim R, Azar WS, Fares AH, et al. NETosis contributes to the pathogenesis of diabetes and its complications. J Mol Endocrinol. 2020;65(4):R65–R76. doi: https://doi.org/10.1530/JME-20-0128
  61. Masucci MT, Minopoli M, Del Vecchio S, et al. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Front Immunol. 2020;11:1749. doi: https://doi.org/10.3389/fimmu.2020.01749
  62. Слуханчук Е.В. NETs и онкологический процесс // Акушерство, Гинекология и Репродукция. — 2021. — Т. 15. — № 1. — С. 107–116. [Slukhanchuk EV. NETs and oncologic process. Obstetrics, Gynecology and Reproduction. 2021;15(1):107–116. (In Russ.)] doi: https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.204
  63. Furumaya C, Martinez-Sanz P, Bouti P, et al. Plasticity in Pro- and Anti-tumor Activity of Neutrophils: Shifting the Balance. Front Immunol. 2020;11:2100. doi: https://doi.org/10.3389/fimmu.2020.02100
  64. Munir H, Jones JO, Janowitz T, et al. Stromal-driven and Amyloid β-dependent induction of neutrophil extracellular traps modulates tumor growth. Nat Commun. 2021;12(1):683. doi: https://doi.org/10.1038/s41467-021-20982-2
  65. Shinde-Jadhav S, Mansure JJ, Rayes RF, et al. Role of neutrophil extracellular traps in radiation resistance of invasive bladder cancer. Nat Commun. 2021;12(1):2776. doi: https://doi.org/10.1038/s41467-021-23086-z
  66. Ortiz-Espinosa S, Morales X, Senent Y, et al. Complement C5a induces the formation of neutrophil extracellular traps by myeloid-derived suppressor cells to promote metastasis. Cancer Lett. 2022;529:70–84. doi: https://doi.org/10.1016/j.canlet.2021.12.027
  67. Castell SD, Harman MF, Morón G, et al. Neutrophils which Migrate to Lymph Nodes Modulate CD4+ T Cell Response by a PD-L1 Dependent Mechanism. Front Immunol. 2019;10:105. doi: https://doi.org/10.3389/fimmu.2019.00105
  68. Воробьева Н.В. Нейтрофилы — атипичные антигенпрезентирующие клетки // Вестник Московского университета. Серия 16. Биология. — 2023. — Т. 78. — № 2. — С. 55–63. [Vorobjeva NV. Neutrophils are atypical antigen-presenting cells. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2023;78(2):55–63. (In Russ.)] doi: https://doi.org/10.55959/MSU0137-0952-16-78-2-8
  69. Jung YJ, Lee Y, Kwon H, et al. Decidual lymphatic endothelial cell-derived granulocyte-macrophage colony-stimulating factor induces M1 macrophage polarization via the NF-κB pathway in severe pre-eclampsia. Am J Reprod Immunol. 2023;90(2):e13744. doi: https://doi.org/10.1111/aji.13744
  70. Omeljaniuk WJ, Jabłońska E, Garley M, et al. Biomarkers of neutrophil extracellular traps (NETs) and nitric oxide-(NO)-dependent oxidative stress in women who miscarried. Sci Rep. 2020;10(1):13088. doi: https://doi.org/10.1038/s41598-020-70106-х
  71. Mangold A, Alias S, Scherz T, et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 2015;116(7):1182–1192. doi: https://doi.org/10.1161/CIRCRESAHA.116.304944
  72. Слуханчук Е.В., Бицадзе В.О., Солопова А.Г., и др. Внеклеточные ловушки нейтрофилов как маркеры тромбовоспаления в патогенезе злокачественных новообразований женских половых органов и молочной железы // Акушерство, Гинекология и Репродукция. — 2022. — Т. 16. — № 4. — С. 426–437. [Slukhanchuk EV, Bitsadze VO, Solopova AG, et al. Neutrophil extracellular traps as markers of thromboinflammation in the pathogenesis of female genital tract and breast malignant neoplasms. Obstetrics, Gynecology and Reproduction. 2022;16(4):426–437. (In Russ.)] doi: https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.33
  73. Boettcher M, Schacker AL, Esser M, et al. Markers of neutrophil activation and extracellular trap formation predict appendicitis. Surgery. 2022;171(2):312–319. doi: https://doi.org/10.1016/j.surg.2021.07.010
  74. Yang S, Gu Z, Lu C, et al. Neutrophil Extracellular Traps Are Markers of Wound Healing Impairment in Patients with Diabetic Foot Ulcers Treated in a Multidisciplinary Setting. Adv Wound Care (New Rochelle). 2020;9(1):16–27. doi: https://doi.org/10.1089/wound.2019.0943

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Реализация классического пути нетоза. Рецепторы на поверхности нейтрофила воспринимают широкий спектр сигналов, которые активируют сигнальные пути. Протеинкиназа С фосфорилирует субъединицы NADH-оксидазы, что ведет к образованию пероксида водорода и синтезу большого количества АФК. Увеличение потока ионов кальция активирует PAD4 с дальнейшим гиперцитруллинированием гистонов. НЭ и МПО приводят к деконденсации хроматина. Газдермин D образует ядерные поры, через которые происходит выброс нитей хроматина с сериновыми протеазами. Параллельно может происходить образование митохондриальных NETs

Скачать (310KB)

© Издательство "Педиатръ", 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».