Study of Platelet Aggregation Function in Children Undergoing COVID-19. Initial Results

Cover Page

Cite item

Full Text

Abstract

Background. There is evidence that platelet dysfunction in new-type coronavirus infection can lead to both thrombotic and hemorrhagic events: hypercoagulation syndrome leading to thrombosis is one of the most threatening complications of COVID-19; equally important is the hemorrhagic syndrome that can be observed after this disease. The study of platelet aggregation function in children with new-onset coronavirus infection is highly relevant: the results of aggregometry in pediatric practice may help to predict the development of complications from vascular and platelet hemostasis.

Aims — to evaluate the direction of changes in platelet haemostasis in children undergoing COVID-19.

Methods. In the first phase of the work, we clarified the normal values of platelet aggregation in children with different inducers in whole blood by impedance testing (based on examination data from 105 conditionally healthy children who had not had COVID-19). At the second (main) phase of the study we conducted a single-stage prospective study including 250 pediatric patients residing in the Russian Federation: 143 children suffered mild COVID-19, while the comparison group consisted of 107 patients who had not been ill with a new-type coronavirus infection. All children (those who had COVID-19 and those who had no disease) underwent a comprehensive examination, which included: physical examination, aggregometry and laboratory tests (to rule out acute inflammatory process and hemogram abnormalities potentially affecting platelet aggregation rates).

Results. Almost half of the patients after COVID-19 had platelet aggregation abnormalities. At the same time, in every third child there were combined multidirectional disorders in the form of hypo- and hyperaggregation with different inducers, in contrast to the group of children who did not have COVID19 (p < 0.05). In the COVID19 group aggregation abnormalities with arachidonic acid were most frequently detected: almost every second patient had hyperaggregation and every fourth patient had hypoaggregation, which was statistically significantly different from the non-disease group (p < 0.05). Analysis of the results depending on the time interval after the disease (1–3 months, 3–6, 6–12 months, more than 12 months) showed platelet hyperaggregation with all inducers at 1–3 months, and there was a tendency to reduce aggregation with thrombin and ADP, but hyperaggregation with arachidonic acid persisted for one year after the disease. At an interval of more than one year after COVID-19 every second patient showed a decrease in platelet function (hypoaggregation with all inducers). No statistically significant differences by gender were observed depending on the time interval after the infection.

Conclusions. The results of the study demonstrate the vectors of impaired vascular and platelet hemostasis in children with mild COVID-19: The time intervals of platelet dysfunction after the disease have been determined. The results of the study may help to develop a surveillance strategy for children who have had a new type of coronavirus infection to prevent the development of complications from vascular and platelet hemostasis.

About the authors

Olga B. Gordeeva

Academician B.V. Petrovsky Russian Scientific Center for Surgery; Pirogov Russian National Research Medical University

Author for correspondence.
Email: obr@yandex.ru
ORCID iD: 0000-0001-8311-9506
SPIN-code: 2562-7725

MD, PhD, Assistant Professor

Russian Federation, Moscow; Moscow

Leila S. Namazova-Baranova

Academician B.V. Petrovsky Russian Scientific Center for Surgery; Pirogov Russian National Research Medical University

Email: orgkomitet@pediatr-russia.ru
ORCID iD: 0000-0002-2209-7531
SPIN-code: 1312-2147

MD, PhD, Professor, Academician of the RAS

Russian Federation, Moscow; Moscow

Albina V. Dobrotok

Academician B.V. Petrovsky Russian Scientific Center for Surgery

Email: dobrotokav@gmail.com
ORCID iD: 0000-0001-8116-598X
SPIN-code: 4248-8015
Russian Federation, Moscow

Natalia L. Aleshenko

Academician B.V. Petrovsky Russian Scientific Center for Surgery

Email: nl.aleshenko@gmail.com
ORCID iD: 0000-0003-4891-9959
SPIN-code: 7387-8709
Russian Federation, Moscow

References

  1. Шатохин Ю.В., Снежко И.В., Рябикина Е.В. Нарушение гемостаза при коронавирусной инфекции // Южно-Российский журнал терапевтической практики. — 2021. — Т. 2. — № 2. — С. 6–15. [Shatohin YuV, Snezhko IV, Ryabikina EV. Violation of hemostasis in coronavirus infection. South Russian Journal of Therapeutic Practice. 2021;2(2):6–15. (In Russ.)] doi: https://doi.org/10.21886/2712-8156-2021-2-2-6-15
  2. Шоалимова З.М., Султонов С.О., Максудов Ж.И. Агрегация тромбоцитов как показатель эндотелиальной дисфункции при постинфарктном кардиосклерозе и ее коррекция // Молодой ученый. — 2017. — № 4 (138). — С. 266–269. [Shalimova ZM, Sultanov S.O., Maksudov J.I. Platelet aggregation as an indicator of endothelial dysfunction in postinfarction cardiosclerosis and its correction. Young Scientist. 2017;4(138):266–269. (In Russ.)] Available from: https://moluch.ru/archive/138/38754/
  3. Марочков А.В., Липницкий А.Л., Купреева И.А., и др. Показатели коагуляционного равновесия и агрегация тромбоцитов у пациентов с инфекцией COVID-19 // Новости хирургии. — 2021. — Т. 29. — № 4. — С. 462–469. [Marochkov АV, Lipnitski AL, Kupreyeva IA, et al. Coagulation Balance and Platelet Aggregation Indicators in Patients with Infection COVID-19. Novosti Khirurgii. 2021;29(4):462–469. (In Russ.)] doi: https://doi.org/10.18484/2305-0047.2021.4.462
  4. Caillon A, Trimaille A., Favre J, et al. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID‐19‐associated thrombopathy. J Thromb Haemost. 2022;20(1):17–31. doi: https://doi.org/10.1111/jth.15566
  5. Гашимова Н.Р., Бицадзе В.О., Панкратьева Л.Л., и др. Дисрегуляция функции тромбоцитов у больных COVID-19 // Акушерство, гинекология и репродукция. — 2022. — Т. 16. — № 6. — С. 692–705. [Gashimova NR, Bitsadze VO, Pankratyeva LL, et al. Dysregulated platelet function in COVID-19 patients. Obstetrics, Gynecology and Reproduction. 2022;16(6):692–705. (In Russ.)] doi: https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.372
  6. Caillon A, Trimaille A, Favre J, et al. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID‐19‐associated thrombopathy. J Thromb Haemost. 2022;20(1):17–31. doi: https://doi.org/10.1111/jth.15566
  7. Петров В.И., Герасименко А.С., Кулакова И.С., и др. Механизмы развития COVID-19 ассоциированной коагулопатии. Диагностика. Лечение // Лекарственный вестник. — 2021. — Т. 15. — № 2 (82). — С. 21–27. [Petrov VI, Gerasimenko AS, Kulakova IS, i dr. Mekhanizmy razvitiya COVID-19 associirovannoj koagulopatii. Diagnostika. Lechenie. Lekarstvennyj Vestnik. 2021;15(2(82)):21–27. (In Russ.)]
  8. Бицадзе В.О., Слуханчук Е.В., Хизроева Д.Х., и др. Внеклеточные ловушки нейтрофилов (NETs) в патогенезе тромбоза и тромбовоспалительных заболеваний // Вестник РАМН. — 2021. — Т. 76. — № 1. — С. 75–85. [Bitsadze VO, Slukhanchuk EV, Khizroeva JKh, et al. Extracellular Neutrophil Traps (NETs) in the Pathogenesis of Thrombosis and Thromboinflammation. Annals of the Russian Academy of Medical Sciences. 2021;76(1):75–85. (In Russ.)] doi: https://doi.org/10.15690/vramn1395
  9. Hottz ED, Bozza PT. Platelet‐leukocyte interactions in COVID‐19: Contributions to hypercoagulability, inflammation, and disease severity. Res Pract Thromb Haemost. 2022;6(3):e12709. doi: https://doi.org/10.1002/rth2.12709
  10. Swenson SS. Platelet dysfunction in COVID-19: mechanisms and implications for patient management. Thrombosis and Haemostasis, 2021.
  11. Bonaventura A, Vecchié A, Dagna L, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5):319–329. doi: https://doi.org/10.1038/s41577-021-00536-9
  12. Ларина В.Н., Головко М.Г., Ларин В.Г. Влияние коронавирусной инфекции (COVID-19) на сердечно-сосудистую систему // Вестник РГМУ. — 2020. — № 2. — С. 5–13. [Larina VN, Golovko MG, Larin VG. Vliyanie koronavirusnoj infekcii (COVID-19) na serdechno-sosudistuyu sistemu. Vestnik RGMU. 2020;2:5–13. (In Russ.)]
  13. Барбараш О.Л., Каретникова В.Н., Кашталап В.В., и др. Новая коронавирусная болезнь (COVID-19) и сердечно-сосудистые заболевания // Комплексные проблемы сердечно-сосудистых заболеваний. — 2020. — Т. 9. — № 2. — С. 17–28. [Barbarash OL, Karetnikova VN, Kashtalap VV, et al. New coronavirus disease (COVID-19) and cardiovascular disease. Complex Issues of Cardiovascular Diseases. 2020;9(2):17–28. (In Russ.)] doi: https://doi.org/ 10.17802/2306-1278-2020-9-2-17-28
  14. Тихомирова И.А., Рябов М.М. Сравнительный анализ показателей состояния системы гемостаза при тяжелом течении COVID-1 // Региональное кровообращение и микроциркуляция. — 2021. — Т. 20. — № 4. — С. 87–94. [Tikhomirova IA, Ryabov MM. Comparative analysis of hemostasis system state indicators in severe COVID-19. Regional blood circulation and microcirculation. 2021;20(4):87–94. (In Russ.)] doi: https://doi.org/10.24884/1682-6655-2021-20-4-87-94
  15. Castro RA, Frishman WH. Thrombotic Complications of COVID-19 Infection: A Review. Cardiol Rev. 2021;29(1):43-47. doi: https://doi.org/10.1097/CRD.0000000000000347
  16. Ярец Ю.И., Ромашевская И.П., Ходулева С.А., и др. Агрегатометрия в диагностике тромбоцитопатий у детей // Гематология. Трансфузиология. Восточная Европа. — 2021. — Т. 7. — № 4. — С. 507–511. [Yarets Y, Romashevskaya I, Choduleva S. Aggregatometry in the diagnosis of thrombocytopathies in children. Hematology. Transfusiology. Eastern Europe. 2021;7(4):507–511. (In Russ.)] doi: https://doi.org/10.34883/PI.2021.7.4.013
  17. Soliman M, Hartmann M. Multiplate Platelet Aggregation Findings Are Dependent on Platelet Count but Can Be Corrected by Use of a Ratio. Appl Sci. 2020;10:7971. doi: https://doi.org/10.3390/app10227971
  18. Baglin T, Gray E, Greaves M, et al. British Committee for Standards in Haematology. Clinical guidelines for testing for heritable thrombophilia. Br J Haematol. 2010;149(2):209–220. doi: https://doi.org/10.1111/j.1365-2141.2009.08022.x
  19. Halimeh S, de Angelis G, Sander A, et al. Multiplate whole blood impedance point of care aggregometry: preliminary reference values in healthy infants, children and adolescents. Klin Padiatr. 2010;222(3):158–163. doi: https://doi.org/10.1055/s-0030-1249081
  20. Национальный стандарт РФ ГОСТ Р 53079.4-2008 «Технологии лабораторные клинические. Обеспечение качества клинических лабораторных исследований. Часть 4. Правила ведения преаналитического этапа» (утв. приказом Федерального агентства по техническому регулированию и метрологии от 18 декабря 2008 г. № 554-ст). [Nacional’nyj standart RF GOST R 53079.4-2008 “Tekhnologii laboratornye klinicheskie. Obespechenie kachestva klinicheskih laboratornyh issledovanij. Chast’ 4. Pravila vedeniya preanaliticheskogo etapa” (utv. prikazom Federal’nogo agentstva po tekhnicheskomu regulirovaniyu i metrologii ot 18 dekabrya 2008 g. № 554-st) (In Russ.)]
  21. NCCLS. How to define and determine reference intervals in the clinical laboratory; approved guideline. 2nd ed. Wayne, PA: NCCLS; 2000. 38 р.
  22. Гордеева О.Б., Карасева М.С., Бабайкина М.А., и др. Исследование агрегационной функции тромбоцитов у детей для определения нормативных значений в различных возрастных группах // Лечащий врач. — 2022. — Т. 4. — № 25. — С. 27–32. [Gordeeva OB, Karaseva MS, Babaikina MA, et al. Platelet aggregation function test for children in order to determine the normative values in different age groups. Lechaschi Vrach. 2022;4(25):27–32. (In Russ.)] doi: https://doi.org/10.51793/OS.2022.25.4.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Characteristics of the group of patients who underwent COVID-19

Download (137KB)
3. Fig. 2. Characterisation of the group of patients who did not have COVID-19

Download (120KB)
4. Fig. 3. Frequency of changes in platelet aggregation with thrombin as a function of time interval after COVID-19 transfer

Download (92KB)
5. Fig. 4. Frequency of changes in platelet aggregation with ADP as a function of time interval after COVID-19 transfer

Download (99KB)
6. Fig. 5. Frequency of changes in platelet aggregation with arachidonic acid as a function of time interval after COVID-19 transfer

Download (115KB)
7. Fig. 6. Platelet aggregation abnormalities with thrombin in COVID-19 diseased and non-diseased groups

Download (76KB)
8. Fig. 7. Platelet aggregation abnormalities with ADP in COVID-19 diseased and non-diseased groups

Download (82KB)
9. Fig. 8. Platelet aggregation abnormalities with arachidonic acid in COVID-19 diseased and non-diseased groups

Download (75KB)

Copyright (c) 2024 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».