Влияние анестезии в анте- и интранатальном периодах развития на когнитивный статус детей в возрасте от 0 до 3 лет

Обложка

Цитировать

Полный текст

Аннотация

В статье представлены результаты систематического обзора публикаций, посвященных проблеме влияния анестезии, воздействующей в анте- и интранатальном периодах развития на когнитивный статус младенцев и детей раннего возраста. Поиск публикаций осуществлялся посредством анализа электронных библиографических баз данных Web of Science и PubMed. В результате анализа выявлено пять групп факторов, которые определяют характер анте- и интранатального влияния анестезии на когнитивный статус детей раннего возраста: вид анестезии, тип анестетика, период развития, на который приходится его воздействие, частота и длительность воздействия, а также дозировка и концентрация вещества. Установлено, что наиболее уязвимы к воздействию анте- и интранатальной анестезии такие когнитивные функции, как память и способность к обучению, речь и перцептивные процессы, а также моторная активность, которая в раннем детстве выступает условием становления интеллекта. Констатируется, что при оперативном родоразрешении и неакушерских операциях у беременных наиболее безопасным вариантом обезболивания (с точки зрения рисков нарушений нейрокогнитивного развития ребенка) является регионарная анестезия. В случае общей анестезии наименьшие риски негативных последствий для когнитивного статуса ребенка в период раннего детства связаны с применением севофлурана.

Об авторах

Юрий Станиславович Александрович

Санкт-Петербургский государственный педиатрический медицинский университет

Автор, ответственный за переписку.
Email: jalex1963@mail.ru
ORCID iD: 0000-0002-2131-4813
SPIN-код: 2225-1630

д.м.н., профессор

Россия, Санкт-Петербург

Ирина Алексеевна Горьковая

Санкт-Петербургский государственный педиатрический медицинский университет

Email: iralgork@mail.ru
ORCID iD: 0000-0002-1488-4746
SPIN-код: 1604-2157

д.психол.н., профессор 

Россия, Санкт-Петербург

Анастасия Владимировна Микляева

Российский государственный педагогический университет им. А.И. Герцена

Email: a.miklyaeva@gmail.com
ORCID iD: 0000-0001-8389-2275
SPIN-код: 9471-8985

д.психол.н., доцент 

Россия, Санкт-Петербург

Список литературы

  1. Белов А.В., Пырегов А.В., Хапчаев И.Ю. Неакушерские операции в акушерстве. Анестезия, принципы ведения, риски // Тольяттинский медицинский консилиум. — 2017. — № 5–6. — С. 59–62. [Belov AV, Pyregov AV, Hapchaev IYu. Neakusherskie operacii v akusherstve. Anesteziya, principy vedeniya, riski. Tol’yattinskij medicinskij konsilium. 2017;(5–6):59–62. (In Russ.)]
  2. Loftis GK, Collins SB, McDowell M. Anesthesia-induced neuronal apoptosis during synaptogenesis: a review of the literature. AANA J. 2012;80(4):291–298.
  3. Satomoto M. Postoperative Cognitive Function Following General Anesthesia in Children. In: Cascella M. (ed.) General Anesthesia Research. Neuromethods. 2020;150:159–166. doi: https://doi.org/10.1007/978-1-4939-9891-3_10
  4. Perna RB, Loughan AR, Le JA, Hertza J. Prenatal and Perinatal Anesthesia and the Long-Term Cognitive Sequelae: A Review. Applied Neuropsychology: Child. 2015;4(1):65–71. doi: https://doi.org/10.1080/21622965.2013.779275
  5. Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA Receptors and Apoptotic Neurodegeneration in the Developing Brain. Science. 1999;283(5398):70–74. doi: https://doi.org/10.1126/science.283.5398.70
  6. Andropoulos DB. Effect of Anesthesia on the Developing Brain: Infant and Fetus. Fetal Diagn Ther. 2018;43(1):1–11. doi: https://doi.org/10.1159/000475928
  7. Ikonomidou C, Bittigau P, Koch C, et al. Neurotransmitters and apoptosis in the developing brain. Biochem Pharmacol. 2001;62:401–405. doi: https://doi.org/10.1016/s0006-2952(01)00696-7
  8. Sun L. Early childhood general anaesthesia exposure and neurocognitive development. Br J Anaesth. 2010;105:i61–i68. doi: https://doi.org/10.1093/bja/aeq302
  9. Disma N, Clunies-Ross N, Chalkiadis GA. Is spinal anaesthesia in young infants really safer and better than general anaesthesia? Curr Opin Anaesthesiol. 2018;31(3):302–307. doi: https://doi.org/10.1097/ACO.0000000000000578
  10. Пантелеева М.В., Овезов А.М., Котов А.С., и др. Послеоперационная когнитивная дисфункция у детей (обзор литературы) // Русский медицинский журнал. — 2018. — № 9. — С. 52–56. [Panteleeva MV, Ovezov AM, Kotov AS, et al. Postoperative cognitive dysfunction in children (Literature review). Russian Medical Journal. 2018;9:52–56. (In Russ.)]
  11. Коттрелл Д.Е. Этот хрупкий мозг — очень юный и старый // Анестезиология и реаниматология. — 2012. — № 4. — С. 5–12. [Cottrell DE. Fragile brain — the very young and the old. Russian Journal of Anaesthesiology and Reanimatology. 2012;4:5–12. (In Russ.)]
  12. Mandim BLS. Review of Anesthesia for Non-Obstetrical Surgery during Pregnancy. J Community Med Health Educ. 2015;5:346. doi: https://doi.org/10.4172/2161-0711.1000346
  13. Diana P, Joksimovic SM, Faisant A, Jevtovic-Todorovic V. Early exposure to general anesthesia impairs social and emotional development in rats. Mol Neurobiol. 2020;57(1):41–50. doi: https://doi.org/10.1007/s12035-019-01755-x
  14. Zou X, Patterson TA, Divine RL, et al. Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain. International Journal of Developmental Neuroscience. 2009;27:727–731. doi: https://doi.org/10.1016/j.ijdevneu.2009.06.010
  15. Рязанова О.В., Александрович Ю.С., Пшениснов К.В. Влияние анестезии при оперативном родоразрешении на неврологический статус новорожденного // Регионарная анестезия и лечение острой боли. — 2012. — Т. 6. — № 3. — С. 38–43. [Ryazanova OV, Aleksandrovich YuS, Pshenisnov KV. Effect of anesthesia on neurological status of newborn in abdominal delivery. Regional Anesthesia and Acute Pain Management Journal. 2012;6(3):38–43. (In Russ.)]
  16. Александрович Ю.С., Рязанова О.В., Муриева Э.А., и др. Влияние анестезии при абдоминальном родоразрешении на неврологический статус новорожденного в раннем неонатальном периоде // Анестезиология и реаниматология. — 2011. — № 1. — С. 15–18. [Aleksandrovich YuS, Ryazanova OV, Murieva EA, et al. Vliyanie anestezii pri abdominal’nom rodorazreshenii na nevrologicheskij status novorozhdennogo v rannem neonatal’nom periode. Anesteziologiya i Reanimatologiya. 2011;1:15–18. (In Russ.)]
  17. Sprung J, Flick RP, Wilder RT, et al. Anesthesia for cesarean delivery and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;111(2):302–310. doi: https://doi.org/10.1097/ALN.0b013e3181adf481
  18. Algert CS, Bowen JR, Warwick BG, et al. Regional block versus general anaesthesia for caesarean section and neonatal outcomes: a population-based. Study. BMC Medicine. 2009;7:20. doi: https://doi.org/10.1186/1741-7015-7-20
  19. Yahalom B, Athiraman U, Soriano SG, et al. Spinal anesthesia in infant rats: development of a model and assessment of neurologic outcomes. Anesthesiology. 2011;114(6):1325–1335. doi: https://doi.org/10.1097/ALN.0b013e31821b5729
  20. Golub MS, Germann SL. Perinatal bupivacaine and infant behavior in rhesus monkeys. Neurotoxicol Teratol. 1998;20(1):29–41. doi: https://doi.org/10.1016/s0892-0362(97)00068-8
  21. Sepkoski CM, Lester BM, Ostheimer GW, Brazelton TB. The effects of maternal epidural anesthesia on neonatal behavior during the first month. Dev Med Child Neurol. 1992;34(12):1072–1080. doi: https://doi.org/10.1111/j.1469-8749.1992.tb11419.x
  22. Abd-Elsayed AA, Díaz-gómez J, Barett G, et al. A case series discussing the anaesthetic management of pregnant patients with brain tumours. F1000Research. 2013;2:92. doi: https://doi.org/10.12688/f1000research.2-92.v2
  23. Bacon RC, Razis PA. The effect of propofol sedation in pregnancy on neonatal condition. Anaesthesia. 1994;49(12):1058–1060. doi: https://doi.org/10.1111/j.1365-2044.1994.tb04356.x
  24. Aydin GB, Coskun F, Sahin A, Aypar U. Influence of sevoflurane and desflurane on neurological and adaptive capacity scores in newborns. Saudi Med J. 2008;29(6):841–846
  25. Xiong M, Li J, Alhashem HM, et al. Propofol exposure in pregnant rats induces neurotoxicity and persistent learning deficit in the offspring. Brain Sci. 2014;4(2):356–375. doi: https://doi.org/10.3390/brainsci4020356
  26. Zhong L, Luo F, Zhao W, et al. Propofol exposure during late stages of pregnancy impairs learning and memory in rat offspring via the BDNF-TrkB signalling pathway. J Cell Mol Med. 2016;20(10):1920–1931. doi: https://doi.org/10.1111/jcmm.12884
  27. Chen D, Qi X, Zhuang R, et al. Prenatal propofol exposure downregulates NMDA receptor expression and causes cognitive and emotional disorders in rats. Eur J Pharmacol. 2019;843:268–276. doi: https://doi.org/10.1016/j.ejphar.2018.11.032
  28. Song R, Xiaomin L, Mengyuan P, et al. Maternal Sevoflurane Exposure Causes Abnormal Development of Fetal Prefrontal Cortex and Induces Cognitive Dysfunction in Offspring. Stem Cells International. 2017;2017:11. doi: https://doi.org/10.1155/2017/6158468
  29. Chai D, Yan J, Li C, et al. Sevoflurane inhibits neuronal migration and axon growth in the developing mouse cerebral cortex. Aging (Albany NY). 2020;12(7):6436–6455. doi: https://doi.org/10.18632/aging.103041
  30. Xu L, Xu Q, Xu F, et al. MicroRNA-325-3p prevents sevoflurane-induced learning and memory impairment by inhibiting Nupr1 and C/EBPβ/IGFBP5 signaling in rats. Aging (Albany NY). 2020;12(6):5209–5220. doi: https://doi.org/10.18632/aging.102942
  31. Chung W, Yoon S, Shin YS. Multiple exposures of sevoflurane during pregnancy induces memory impairment in young female offspring mice. Korean J Anesthesiol. 2017;70(6):642–647. doi: https://doi.org/10.4097/kjae.2017.70.6.642
  32. Yang T, Zhuang L, Rei Fidalgo AM, et al. Xenon and sevoflurane provide analgesia during labor and fetal brain protection in a perinatal rat model of hypoxia-ischemia. PLoS One. 2012;7(5):e37020. doi: https://doi.org/10.1371/journal.pone.0037020
  33. Velly LJ, Canas PT, Guillet BA, et al. Early anesthetic preconditioning in mixed cortical neuronal-glial cell cultures subjected to oxygen-glucose deprivation: the role of adenosine triphosphate dependent potassium channels and reactive oxygen species in sevoflurane-induced neuroprotection. Anesth Analg. 2009;108(3):955–963. doi: https://doi.org/10.1213/ane.0b013e318193fee7
  34. Luo F, Hu Y, Zhao W, et al. Maternal Exposure of Rats to Isoflurane during Late Pregnancy Impairs Spatial Learning and Memory in the Offspring by Up-Regulating the Expression of Histone Deacetylase 2. PLoS One. 2016;11(8):e0160826. doi: https://doi.org/10.1371/journal.pone.0160826
  35. Rizzi S, Carter LB, Ori C, Jevtovic-Todorovic V. Clinical anesthesia causes permanent damage to the fetal guinea pig brain. Brain Pathol. 2008;18(2):198–210. doi: https://doi.org/10.1111/j.1750-3639.2007.00116.x
  36. Li Y, Lianga G, Wangab S, et al. Effects of fetal exposure to isoflurane on postnatal memory and learning in rats. Neuropharmacology. 2007;53(8):942–950. doi: https://doi.org/10.1016/j.neuropharm.2007.09.005
  37. Zou S, Wei ZZ, Yue Y, et al. Desflurane and Surgery Exposure During Pregnancy Decrease Synaptic Integrity and Induce Functional Deficits in Juvenile Offspring Mice. Neurochem Res. 2020;45 (2):418–427. doi: https://doi.org/10.1007/s11064-019-02932-z
  38. Paule MG, Li M, Allen RR, et al. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicology and Teratology. 2011;33:220–230. doi: https://doi.org/10.1016/j.ntt.2011.01.001
  39. Zhao T, Li C, Wei W, et al. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Sci Rep. 2016;6:26865. doi: https://doi.org/10.1038/srep26865
  40. Fujinaga M, Baden JM. Methionine prevents nitrous-oxide induced teratogenicity in rat embryos grown in culture. Anesthesiology. 1994;81:184–189. doi: https://doi.org/10.1097/00000542-199407000-00025
  41. Vallejo MC, Zakowski MI. Pro-Con Debate: Nitrous Oxide for Labor Analgesia. Biomed Res Int. 2019;2019:4618798. doi: https://doi.org/10.1155/2019/4618798
  42. Liu J, Zhao Y, Yang J, et al. Neonatal repeated exposure to isoflurane not sevoflurane in mice reversibly impaired spatial cognition at juvenile-age. Neurochemical Research. 2017;42(2):595–605. doi: https://doi.org/10.1007/s11064-016-2114-7
  43. Kodama M, Satoh Y, Otsubo Y, et al. Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology. 2011;115:979–991. doi: https://doi.org/10.1097/ALN.0b013e318234228b
  44. Satomoto M, Satoh Y, Terui K, et al. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology. 009;110:628–637. doi: https://doi.org/10.1097/ALN.0b013e3181974fa2
  45. Block R, Magnotta V, Bayman E, et al. Are Anesthesia and Surgery During Infancy Associated with Decreased White Matter Integrity and Volume During Childhood? Anesthesiology. 2017;127(5):788–799. doi: https://doi.org/10.1097/ALN.0000000000001808
  46. Stratmann G, Lee J, Sall JW, et al. Effect of general anesthesia in infancy on long-term recognition memory in humans and rats. Neuropsychopharmacology. 2014;39:2275–2287. doi: https://doi.org/10.1038/npp.2014.134
  47. Vutskits L, Davidson A. Update on developmental anesthesia neurotoxicity. Curr Opin Anaesthesiol. 2017;30(3):337–342. doi: https://doi.org/10.1097/ACO.0000000000000461
  48. Block RI, Thomas JJ, Bayman EO, et al. Are anesthesia and surgery during infancy associated with altered academic performance during childhood? Anesthesiology. 2012;117(3):494–503. doi: https://doi.org/10.1097/ALN.0b013e3182644684
  49. Bartels M, Althoff RR, Boomsma DI. Anesthesia and cognitive performance in children: no evidence for a causal relationship. Twin. Res. Hum. Genet. 2009;12(3):246–253. doi: https://doi.org/10.1375/twin.12.3.246
  50. Sun LS, Li G, Miller TL, et al. Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA. 2016;315:2312–2320. doi: https://doi.org/10.1001/jama.2016.6967
  51. Kalkman CJ, Peelen L, Moons KG, et al. Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology. 2009;110(4):805–812. doi: https://doi.org/10.1097/ALN.0b013e31819c7124
  52. Jevtovic-Todorovic V. Exposure of Developing Brain to General Anesthesia: What Is the Animal Evidence? Anesthesiology. 2018;128(4):832–839. doi: https://doi.org/10.1097/ALN.0000000000002047
  53. Creeley C., Dikranian G., Dissen L. et al. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. British Journal of Anaesthesia. 2013;110(1):i29–i38. doi: https://doi.org/10.1093/bja/aet173
  54. Van der Veeken L, Van der Merwe J, Devroe S, et al. Maternal surgery during pregnancy has a transient adverse effect on the developing fetal rabbit brain. Am J Obstet Gynecol. 2019;221(4):355.e1–355.e19. doi: https://doi.org/10.1016/j.ajog.2019.07.029
  55. Davidson AJ, Disma N, de Graaff JC, et al. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet. 2016;387:239–250. doi: https://doi.org/10.1016/S0140-6736(15)00608-X
  56. Diana P, Joksimovic SM, Faisant A, Jevtovic-Todorovic V. Early exposure to general anesthesia impairs social and emotional development in rats. Mol Neurobiol. 2020;57(1):41–50. doi: https://doi.org/10.1007/s12035-019-01755-x
  57. Zhang Q, Luo F, Zhao W. et al. Effect of prolonged anesthesia with propofol during early pregnancy on cognitive function of offspring rats. Chinese Journal of Anesthesiology. 2014;34(9):1051–1053. doi: https://doi.org/10.1111/jcmm.13524
  58. Brambrink AM, Evers AS, Avidan MS, et al. Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology. 2012;116(2):372–384. doi: https://doi.org/10.1097/ALN.0b013e318242b2cd
  59. Yu Z, Wang J, Wang H, et al. Effects of Sevoflurane Exposure During Late Pregnancy on Brain Development and Beneficial Effects of Enriched Environment on Offspring Cognition. Cell Mol Neurobiol. 2020:1–14. doi: https://doi.org/10.1007/s10571-020-00821-6
  60. Lu Y, Huang Y, Jiang J, et al. Neuronal apoptosis may not contribute to the long-term cognitive dysfunction induced by a brief exposure to 2% sevoflurane in developing rats. Biomed Pharmacother. 2016;78:322–328. doi: https://doi.org/10.1016/j.biopha.2016.01.034
  61. Wu Z, Zhang Y, Yang X, Zhao P. Maternal Treadmill Exercise Reduces the Neurotoxicity of Prenatal Sevoflurane Exposure in Rats via Activation of p300 Histone Acetyltransferase. Neurochem Res. 2020;45(7):1626–1635. doi: https://doi.org/10.1007/s11064-020-03023-0
  62. Noguchi KK, Johnson SA, Dissen GA, et al. Isoflurane exposure for three hours triggers apoptotic cell death in neonatal macaque brain. British Journal of Anaesthesia. 2017;119(3):524–531. doi: https://doi.org/10.1093/bja/aex123
  63. Wang S, Peretich K, Zhao Y, et al. Anesthesia-Induced Neurodegeneration in Fetal Rat Brains. Pediatr Res. 2009;66:435–440. doi: https://doi.org/10.1203/PDR.0b013e3181b3381b
  64. Suehara T, Morishita J, Ueki M, et al. Effects of sevoflurane exposure during late pregnancy on brain development of offspring mice. Pediatric Anaesthesia. 2016;26:52–59. doi: https://doi.org/10.1111/pan.12785
  65. Wilder RT, Flick RP, Sprung J, et al. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;110(4):796–804. doi: https://doi.org/10.1097/01.anes.0000344728.34332.5d
  66. Sprung J, Flick RP, Katusic SK, et al. Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin Proc. 2012;87(2):120–129. doi: https://doi.org/10.1016/j.mayocp.2011.11.008
  67. Flick RP, Katusic SK, Colligan RC, et al. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery Pediatrics. 2011;128(5):e1053–e1061. doi: https://doi.org/10.1542/peds.2011-0351
  68. Wu Z, Li X, Zhang Y, et al. Effects of Sevoflurane Exposure During Mid-Pregnancy on Learning and Memory in Offspring Rats: Beneficial Effects of Maternal Exercise. Frontiers in Cellular Neuroscience. 2018;12:122. doi: https://doi.org/10.3389/fncel.2018.00122
  69. Shen F-Y, Song Y-C, Guo F, et al. Cognitive Impairment and Endoplasmic Reticulum Stress Induced by Repeated Short-Term Sevoflurane Exposure in Early Life of Rats. Front. Psychiatry. 2018;9:332. doi: https://doi.org/10.3389/fpsyt.2018.00332
  70. Fang F, Song R, Ling X, et al. Multiple sevoflurane anesthesia in pregnant mice inhibits neurogenesis of fetal hippocampus via repressing transcription factor Pax6. Life Sciences. 2017;175:16–22. doi: https://doi.org/10.1016/j.lfs.2017.03.003
  71. Bellinger DC. What is an adverse effect? A possible resolution of clinical and epidemiological perspectives on neurobehavioral toxicity. Environ Res. 2004;95(3):394–405. doi: https://doi.org/10.1016/j.envres.2003.07.013

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 2020

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».