Immunogenicity and protectivity of the peptide vaccine against SARS-CoV-2


Cite item

Abstract

Background. In 2020, the pandemic caused by novel coronavirus infection has become one of the most critical global health challenges during the past century. The lack of a vaccine, as the most effective way to control the novel infection, has prompted the development of a large number of preventive products by the scientific community. We have developed a candidate vaccine (EpiVacCorona) against novel coronavirus infection caused by SARS-CoV-2 that is based on chemically synthesized peptides conjugated to a carrier protein and adsorbed on aluminum hydroxide and studied the specific activity of the developed vaccine.

Aims — study of the immunogenicity and protectivity of the peptide candidate vaccine EpiVacCorona.

Methods. The work was performed using standard molecular biological, virological and histological methods.

Results. It was demonstrated that EpiVacCorona, when administered twice, spaced 14 days apart, to hamsters, ferrets, and non-human primates (african green monkeys, rhesus macaques) at a dose of 260  μg, which is equal to one inoculation dose for humans, induces virus-specific antibodies in 100% of the animals. Experiments in hamsters showed this vaccine to be associated with the dose-dependent immunogenicity. The vaccine was shown to accelerate the elimination of the virus from the upper respiratory tract in ferrets and prevent the development of pneumonia in hamsters and non-human primates following a respiratory challenge with novel coronavirus.

Conclusions. The results of a preclinical specific activity study indicate that the use of EpiVacCorona has the potential for human vaccination.

About the authors

Aleksandr B. Ryzhikov

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: ryzhik@vector.nsc.ru
ORCID iD: 0000-0002-7009-0748
SPIN-code: 9282-2863

Cand. Sc. (Biology), Department Head

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Evgenii А. Ryzhikov

Limited Liability Company “EpiVac”

Email: e.a.ryzhikov@gmail.com
ORCID iD: 0000-0002-4233-7870

Director

Russian Federation, Koltsovo, Novosibirsk Region

Marina P. Bogryantseva

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: bogryantseva@vector.nsc.ru
ORCID iD: 0000-0003-0467-5024
SPIN-code: 5017-6279

Cand. Sc. (Biology), Department Head

Russian Federation, Koltsovo, Novosibirsk Region

Elena D. Danilenko

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: danilenko_ed@vector.nsc.ru
ORCID iD: 0000-0001-5026-1602
SPIN-code: 1388-4127

Cand. Sc. (Biology), Director

Russian Federation, Koltsovo, Novosibirsk Region

Ilnaz R. Imatdinov

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: imatdinov_ir@vector.nsc.ru
ORCID iD: 0000-0002-6927-7580
SPIN-code: 8174-1635

Cand. Sc. (Biology), Leading Researcher

Russian Federation, Koltsovo, Novosibirsk Region

Elena A. Nechaeva

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: nechaeva@vector.nsc.ru
ORCID iD: 0000-0002-6901-7738
SPIN-code: 9270-8888

Cand. Sc. (Medicine), Deputy Director General

Russian Federation, Koltsovo, Novosibirsk Region

Oleg V. Pyankov

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: pyankov@vector.nsc.ru
ORCID iD: 0000-0003-3340-8750
SPIN-code: 8622-9293

Cand. Sc. (Biology), Department Head

Russian Federation, Koltsovo, Novosibirsk Region

Olga G. Pyankova

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: pyankova_og@vector.nsc.ru
SPIN-code: 5872-2078

Leading Researcher

Russian Federation, Koltsovo, Novosibirsk Region

Ivan M. Susloparov

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: imsous@vector.nsc.ru
ORCID iD: 0000-0002-9718-7339
SPIN-code: 8371-4785

Cand. Sc. (Biology), Senior Researcher

Russian Federation, Koltsovo, Novosibirsk Region

Oleg S. Taranov

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: taranov@vector.nsc.ru
ORCID iD: 0000-0002-6746-8092
SPIN-code: 5894-6518

Department Head

Russian Federation, Koltsovo, Novosibirsk Region

Andrei S. Gudymo

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: gudymo_as@vector.nsc.ru
ORCID iD: 0000-0001-6952-6412
SPIN-code: 5274-0265

Junior Researcher

Russian Federation, Koltsovo, Novosibirsk Region

Natalya V. Danilchenko

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: danilchenko_nv@vector.nsc.ru
ORCID iD: 0000-0003-2655-4629
SPIN-code: 3041-1686

Junior Researcher

Russian Federation, Koltsovo, Novosibirsk Region

Ekaterina S. Sleptsova

Limited Liability Company “EpiVac”

Email: katyuss@yandex.ru

Head of the Quality Control Department

Russian Federation, Koltsovo, Novosibirsk Region

Sergei A. Bodnev

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: bodnev@vector.nsc.ru
ORCID iD: 0000-0003-0599-3817
SPIN-code: 2219-2723

Cand. Sc. (Medicine), Leading Researcher

Russian Federation, Koltsovo, Novosibirsk Region

Galina S. Onkhonova

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: onhonova_gs@vector.nsc.ru
ORCID iD: 0000-0002-1547-1708
SPIN-code: 2017-8031

Junior Researcher

Russian Federation, Koltsovo, Novosibirsk Region

Vladimir N. Petrov

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: vnpetrov@vector.nsc.ru
ORCID iD: 0000-0002-3270-8412

Department Head

Russian Federation, Koltsovo, Novosibirsk Region

Anastasiya A. Moiseeva

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: chalaya_aa@vector.nsc.ru
ORCID iD: 0000-0001-7048-2357
SPIN-code: 9361-8776

Junior Researcher

Russian Federation, Koltsovo, Novosibirsk Region

Polina Y. Torzhkova

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: torzhkova_pyu@vector.nsc.ru
ORCID iD: 0000-0002-0387-1907
SPIN-code: 8720-8129

Research Intern

Russian Federation, Koltsovo, Novosibirsk Region

Stepan A. Pyankov

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: pyankov_sa@vector.nsc.ru
ORCID iD: 0000-0002-6593-6614
SPIN-code: 1344-4854

Leading Researcher

Russian Federation, Koltsovo, Novosibirsk Region

Tatyana V. Tregubchak

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Author for correspondence.
Email: tregubchak_tv@vector.nsc.ru
ORCID iD: 0000-0001-9608-2044
SPIN-code: 1028-1981

Leading Researcher

Russian Federation, Koltsovo, Novosibirsk Region

Denis V. Antonets

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: antonec@yandex.ru
ORCID iD: 0000-0002-1823-9701
SPIN-code: 6825-8804

Cand. Sc. (Biology), Senior Researcher

Russian Federation, Koltsovo, Novosibirsk Region

Elena V. Gavrilova

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: gavrilova_ev@vector.nsc.ru
ORCID iD: 0000-0002-7118-5749
SPIN-code: 4523-9695

Cand. Sc. (Biology), Deputy Director

Russian Federation, Koltsovo, Novosibirsk Region

Rinat A. Maksyutov

Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: maksyutov_ra@vector.nsc.ru
ORCID iD: 0000-0003-1314-281X
SPIN-code: 7332-2123

D.Sc. (Biology), General Director

Russian Federation, Koltsovo, Novosibirsk Region

References

  1. Q&A: Influenza and COVID-19 — similarities and differences. World Health Organization. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-similarities-and-differences-covid-19-and-influenza
  2. Draft landscape of COVID-19 candidate vaccines.World Health Organization. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
  3. Wang QD, Zhang LF, Kuwahara K, et al. Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates. ACS Infect Dis. 2016;2(5):361–376. doi: https://doi.org/10.1021/acsinfecdis.6b00006
  4. Song WF, Gui M, Wang XQ, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PloS Pathogens. 2018;14(8):e1007236. doi: https://doi.org/10.1371/journal.ppat.1007236
  5. GISAID Database. Available from: https://www.gisaid.org/
  6. Maksyutov AZ, Bachinskii AG, Bazhan SI, Ryzhikov EA. Design of safe AIDS vaccines based on search for local similarities between HIV-1 and human proteins. AIDS vaccines and related topics. Bourinbaiar AS, ed. Research Signpost, Kerala, India; 2004. P.47–62.
  7. Goncharova E, Ryzhikov E, Poryvaev V, et al. Intranasal immunization with inactivated tick-borne encephalitis virus and the antigenic peptide 89–119 protects mice against intraperitoneal challenge. Int J Med Microbiol. 2006;296(Suppl 40):195–201. doi: https://doi.org/10.1016/j.ijmm.2006.02.002
  8. Maksyutov AZ, Ryzhikov AB, Kolobov AA, Maksyutov ZA. Antigenic peptides. Patent WO 2004/031212;2004.
  9. Bjornson-Hooper ZB, Fragiadakis GK, Spitzer MH, et al. A comprehensive atlas of immunological differences between humans, mice and non-human primates. bioRxiv. 2019:574160. doi: https://doi.org/10.1101/574160
  10. Zaks L. Statistical estimation. (Theory and methods). Moscow: Statistika; 1976.
  11. Ashmarin IP, Vorob’yov AA. Statistical Methods in Microbiological Research. Leningrad: Medgiz; 1962.
  12. R v.4.0.2; R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org
  13. Ni L, Ye F, Cheng M-L, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. 2020;52(6):971–977.e3. doi: https://doi.org/10.1016/j.immuni.2020.04.023
  14. Ryzhikov AB, Ryzhikov EA, Bogryantseva MP, Gavrilova EV, Danilenko ED, Imatdinov IR, Maksyutov RA, Nechaeva EA, Popova AYu, Pyankov OV, Pyankova OG, Suloparov IM. Peptide immunogens and vaccine composition against COVID-19 coronavirus infection using peptide immunogens. Patent RU 2738081. 2020.
  15. Azmi F, Ahmad Fuaad AA, Skwarczynski M, Toth I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother. 2014;10(3):778–796. doi: https://doi.org/10.4161/hv.27332
  16. Tang F, Quan Y, Xin ZT, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol. 2011;186(12):7264–7268. doi: https://doi.org/10.4049/jimmunol.0903490
  17. Ng OW, Chia A, Tan AT, et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016;34(17):2008–2014. doi: https://doi.org/10.1016/j.vaccine.2016.02.063
  18. Musicò A, Frigerio R, Mussida A, et al. SARS-CoV-2 Epitope Mapping on Microarrays Highlights Strong Immune-Response to N Protein Region. Vaccines (Basel). 2021;9(1):35. doi: https://doi.org/10.3390/vaccines9010035
  19. Shrock E, Fujimura E, Kula T, et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science. 2020;370(6520):eabd4250. doi: https://doi.org/10.1126/science.abd4250
  20. Wang H, Wu X, Zhang X, et al. SARS-CoV-2 Proteome Microarray for Mapping COVID-19 Antibody Interactions at Amino Acid Resolution. ACS Cent Sci. 2020;6(12):2238–2249. doi: https://doi.org/10.1021/acscentsci.0c00742
  21. Ferretti AP, Kula T, Wang Y, et al. Unbiased Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein. Immunity. 2020;53(5):1095–1107.e3. doi: https://doi.org/10.1016/j.immuni.2020.10.006
  22. He J, Huang JR, Zhang YL, Zhang J. SARS‐CoV‐2 nucleocapsid protein intranasal inoculation induces local and systemic T cell responses in mice. J Med Virol. 2021;93:1923–1925. doi: https://doi.org/10.1002/jmv.26769
  23. Ahlén G, Frelin L, Nikouyan N, et al. The SARS-CoV-2 N Protein Is a Good Component in a Vaccine. J Virol. 2020;94(18):e01279–20. doi: https://doi.org/10.1128/JVI.01279-20.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Schematic illustration of S protein epitope locations. Vinous color shows the locations of coronavirus S protein immunodominant sites, orange color shows the epitopes that cause antibody-dependent enhancement of infection, green color shows epitopes included in the EpiVacCorona vaccine. This illustration uses materials from the study [10], Protein Data Base 6ACJ.pdb and CDC Image Library PHIL ID # 23312.

Download (388KB)
3. Figure 2. Findings on EpiVacCorona immunogenicity in hamster and ferret experiments. All animals were immunized twice 14 days apart; the route of administration was intramuscular. A: Serum antibody titers of hamsters before EpiVacCorona administration, and 14 and 28 days after the first immunization. B: Serum antibody titers of ferrets before EpiVacCorona administration, and 14 and 28 days after the first immunization. C: Titers of virus-neutralizing antibodies in the sera of hamsters before EpiVacCorona administration, and 14 and 28 days after the first immunization. Two vaccine doses were studied: 260 and 86 μg. D: Titers of virus-neutralizing antibodies in the sera of ferrets before EpiVacCorona administration, and 14 and 28 days after the first immunization. Three batches of the vaccine at a dose of 260 μg were studied.

Download (195KB)
4. Figure 3. Immune responses to coronavirus antigens in EpiVacCorona-vaccinated green monkeys and rhesus macaques. All animals of EpiVacCorona group were immunized twice intramuscularly 14 days apart at a dose of 260 μg. A: Titers of serum antibodies to EpiVacCorona antigen in primates Chlorocebus aethiops 14, 21 and 28 days after the first immunization. B: Titers of serum antibodies to EpiVacCorona antigen in primates Macaca mulatta 14, 21 and 28 days after the first immunization. C: Titers of serum antibodies to inactivated SARS-CoV-2 antigens in primates Chlorocebus aethiops 14, 21 and 28 days after the first immunization. D: Titers of serum antibodies to inactivated SARS-CoV-2 antigens in primates Macaca mulatta 14, 21 and 28 days after the first immunization.

Download (128KB)
5. Figure 4. EpiVacCorona protectivity in hamsters and ferrets following coronavirus challenge. All animals were immunized twice intramuscularly 14 days apart. A: Viral load, as measured by Ct value, im hamster nasal washes on days 2, 4, 6, 8 and 10 after intranasal coronavirus challenge. Two vaccine doses were studied: 260 and 86 μg. B: Viral load, as measured by Ct value, im ferret nasal washes on days 2, 4, 6, 8 and 10 after intranasal coronavirus challenge. Three vaccine batches at a dose of 260 μg were studied. C: Viral load, as measured by the number of FFU, in nasal washes of hamsters on days 2, 4, 6, 8 and 10 after intranasal coronavirus challenge. Two vaccine doses were studied: 260 and 86 μg. D: Viral load, as measured by the number of FFU, in nasal washes of ferrets on days 2, 4, 6, 8 and 10 after intranasal coronavirus challenge. Three vaccine batches at a dose of 260 μg were studied. E: Lung/body weight index measured on days 6 and 14 after intranasal coronavirus challenge of hamsters. Two vaccine doses were studied: 260 and 86 μg. F: Lung/body weight index measured on days 6 and 14 after intranasal coronavirus challenge of ferrets. Three vaccine batches at a dose of 260 μg were studied.

Download (257KB)
6. Figure 5. Histological studies of the lungs of hamsters infected with SARS-CoV-2. A. Lungs of hamsters immunized with EpiVacCorona at a dose 260 μg 6 days after coronavirus challenge. Atelectasis, plasmorrhages, pronounced local inflammatory cell infiltration by lymphoid cells and neutrophilic granulocytes are observed. Small bronchi without epithelium, but diapedesis is either weak (lymphocytes) or barely noticeable. B. Lungs of hamsters immunized with EpiVacCorona at a dose 86 μg 6 days after coronavirus challenge. Severe atelectasis, widespread neutrophil infiltration, vasculitis and destruction of individual small bronchi, small loci of necrotization, alveolar cavities are filled with plasma and erythrocytes. C. Lungs of unvaccinated hamsters 6 days after coronavirus challenge. The parenchyma is practically airless due to alveolar hemorrhagic syndrome and pronounced infiltration by mononuclear cells. Microangiopathy, plasmorrhagia of vascular walls, interalveolar septa are sharply thickened, bronchiolitis and hyaline membranes. D. Lungs of unvaccinated hamsters before coronavirus challenge.

Download (1MB)
7. Figure 6. EpiVacCorona protectivity in green monkeys and rhesus macaques as measured by viral load in URT, body temperature and weight loss following coronavirus challenge. All animals of EpiVacCorona group were immunized twice intramuscularly 14 days apart at a dose of 260 μg. A: Viral load, as measured by Ct value, in Chlorocebus aethiops nasal washes on days 2, 4, 6, 8, 10 and 12 after intranasal coronavirus challenge. B: Viral load, as measured by Ct value, in Macaca Mulatta nasal washes on days 2, 4, 6, 8, 10 and 12 after intranasal coronavirus challenge. C: Body temperature of primates Chlorocebus aethiops on days 2, 4, 6, 8, 10 and 12 after intranasal coronavirus challenge. D: Body temperature of primates Macaca Mulatta on days 2, 4, 6, 8, 10 and 12 after intranasal coronavirus challenge. E: Body weight change in primates Chlorocebus aethiops on days 2, 4, 6, 8, 10 and 12 after intranasal coronavirus challenge. F: Body weight change in primates Macaca Mulatta on days 2, 4, 6, 8, 10 and 12 after intranasal coronavirus challenge.

Download (288KB)
8. Figure 7. Anterior X-ray of African green monkey thoracic organs 14 days after virus challenge. Unvaccinated animal. Arrows indicate pulmonary consolidation of uneven intensity in lower and middle areas on the left, enhanced pulmonary pattern in lower areas on the right.

Download (160KB)
9. Figure 8. Anterior X-ray of African green monkey thoracic organs 14 days after virus challenge. Vaccinated animal. No signs of pneumonia.

Download (103KB)
10. Figure 9. Histological studies of the lungs of primates infected with SARS-CoV-2. A. Primate Clorocebus aethiops # 9618 - placebo. Dense atelectasis, pronounced edema and inflammatory infiltration by lymphoid cells and neutrophils. Loss of airiness is accompanied by spasm of blood vessels and small bronchi. Stasis of erythrocytes in the vessels of the microvasculature. Solitary vasculitis and bronchiolitis. Staining with hematoxylin and eosin. The bar is shown in the picture. B. Primate Clorocebus aethiops # 9628 - placebo. Vascular hyperemia, hemorrhages and plasmorrhages in the alveolar cavity. Thrombosis of small arterial-type vessels. Plasmorrhagia of blood vessel walls, solitary small foci of fibrinoid necrosis. Staining with hematoxylin and eosin. The bar is shown in the picture. C. Primate Macaca mulatta # 9643 - EpiVacCorona vaccine. A small focus of plasmorrhagia and hemorrhage in the alveolar cavity, moderate lymphocytic infiltration and edema of the interalveolar septa. Perifocal compensatory emphysema. Staining with hematoxylin and eosin. The bar is shown in the picture. D. Primate Clorocebus aethiops # 9616 - EpiVacCorona vaccine. Small peribronchial accumulations of lymphocytes are observed. Moderately pronounced emphysematous changes in lung tissue. Staining with hematoxylin and eosin. The bar is shown in the picture.

Download (1MB)

Copyright (c) 2021 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».