Energy capacity and energy losses of inductive energy storage device based on composite HTS tapes

Cover Page

Cite item

Full Text

Abstract

Aim. The aim of this study is to compare the performance of toroidal and solenoidal configurations of a superconducting inductive energy storage device using CORC® and racetrack cables made from high-temperature superconducting tapes.

Methods. A numerical multiphysics analysis of inductive energy storage device was performed using the finite element method in the Comsol Multiphysics engineering modeling environment.

Results. The analysis revealed that the CORC® cable in a solenoid configuration, with a transport current density to critical current density ratio of 0.7 at the boiling point of liquid nitrogen, was the most suitable for inductive energy storage.

Conclusion. The developed numerical model allows to calculate energy capacity and energy losses in superconducting inductive energy storage devices configured as solenoids or toroids. This model can be applied to the development of inductive storage devices made from HTS composites.

About the authors

Dmitry A. Alexandrov

National research nuclear university MEPHI

Author for correspondence.
Email: cfrfcfrfdima123@gmail.com
ORCID iD: 0009-0001-7383-0094
SPIN-code: 5365-6190

research engineer

Russian Federation, Moscow

Irina V. Martirosian

National research nuclear university MEPHI

Email: mephizic@gmail.com
ORCID iD: 0000-0003-2301-1768
SPIN-code: 3368-8809

PhD in Physics and Mathematics, PhD, research engineer

Russian Federation, Moscow

Sergey V. Pokrovskii

National research nuclear university MEPHI

Email: sergeypokrovskii@gmail.com
ORCID iD: 0000-0002-3137-4289
SPIN-code: 6643-7817

PhD in Physics and Mathematics, Head of the Laboratory

Russian Federation, Moscow

Victoria V. Zaletkina

National research nuclear university MEPHI

Email: viktoriazaletkina@gmail.com
ORCID iD: 0009-0009-9854-5028

research engineer

Russian Federation, Moscow

Igor A. Rudnev

National research nuclear university MEPHI

Email: iarudnev@mephi.ru
ORCID iD: 0000-0002-5438-2548
SPIN-code: 2070-5265

Doctor of Physical and Mathematical Sciences, Professor, Lead Research Fellow

Russian Federation, Moscow

References

  1. Adetokun BB, Muriithi CM, Ojo JO. Voltage stability analysis and improvement of power system with increased SCIG-based wind system integration. IEEE PES/IAS PowerAfrica. 2020;2020:1–5. doi: 10.1109/PowerAfrica49420.2020.9219803
  2. Adetokun BB, Ojo JO, Muriithi CM. Reactive power-voltage-based voltage instability sensitivity indices for power grid with increasing renewable energy penetration. IEEE Access. 2020;8:85401–85410. doi: 10.1109/ACCESS.2020.2992194
  3. Amiryar ME, Pullen KR. A review of flywheel energy storage system technologies and their applications. Applied Sciences. 2017;7(2):286. doi: 10.3390/app7030286
  4. Saikia BK. A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel. 2020;282:118796. doi: 10.1016/j.fuel.2020.118796
  5. Connolly D. The technical and economic implications of integrating fluctuating renewable energy using energy storage. Renewable energy. 2012;43:47–60.
  6. Wang JS, Zeng Y, Huang H, et.al. The first man-loading high temperature superconducting maglev test vehicle in the world. Physica C. 2002;378–381(1):809–814. doi: 10.1016/S0921-4534(02)01548-4
  7. Song M. 100 kJ/50 kW HTS SMES for micro-grid. IEEE Transactions on Applied Superconductivity. 2014;25(3):1–6. doi: 10.1109/TASC.2014.2386345
  8. Mukherjee P, Rao VV. Design and development of high temperature superconducting magnetic energy storage for power applications-A review. Physica C: Superconductivity and its applications. 2019;563:67–73. doi: 10.1016/j.physc.2019.05.001
  9. Ali MH, Wu B, Dougal RA. An overview of SMES applications in power and energy systems. IEEE transactions on sustainable energy. 2010;1(1):38–47. doi: 10.1109/TSTE.2010.2044901
  10. Adetokun BB, Oghorada O, Abubakar SJ. Superconducting magnetic energy storage systems: Prospects and challenges for renewable energy applications. Journal of Energy Storage. 2022;55:105663. doi: 10.1109/TSTE.2010.2044901
  11. Yagotintsev K, Anvar VA, Gao P, et al. AC loss and contact resistance in REBCO CORC®, Roebel, and stacked tape cables. Superconductor science and technology. 2020;33(8):085009. doi: 10.1088/1361-6668/ab97ff
  12. Cardozo NJL, ten Kate HJJ, Dudarev MA. Development of the First ReBCO-CORC Based Racetrack Model Coil. [Student thesis: Master] Eindhoven, 2018.
  13. Yeom HK. Study of cryogenic conduction cooling systems for an HTS SMES. IEEE transactions on applied superconductivity. 2007;17(2):1955–1958. doi: 10.1109/TASC.2007.898491
  14. Molodyk A. Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion. Scientific reports. 2021;11(1):2084. doi: 10.1038/s41598-021-81559-z
  15. Zubko VV. Heat transfer simulation to liquid nitrogen from HTS tapes at the overload currents. Physics Procedia. 2015;67:619–624. doi: 10.1016/j.phpro.2015.06.105
  16. Saichi Y, Miyagi D, Tsuda MA. Suitable design method of SMES coil for reducing superconducting wire usage considering maximum magnetic flux density. IEEE transactions on applied superconductivity. 2013:24(3):1–5. doi: 10.1109/TASC.2013.2290279

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental critical surface

Download (130KB)
3. Fig. 2. Architecture of HTSC tape SuperOx

Download (137KB)
4. Fig. 3. Cable schematic diagram CORC®

Download (82KB)
5. Fig. 4. Schematic diagram of a racetrack coil

Download (55KB)
6. Fig. 5. Geometry of analyzed configurations. Left: SPIN with toroidal geometry; Right – SPIN with solenoidal geometry

Download (134KB)
7. Fig. 6. Magnetic field induction rate and magnetic lines: a – in solenoidal SPIN; b – in toroidal SPIN at an operating current of 5 kA

Download (570KB)
8. Fig. 7. Total loss in racetrack and CORC® cable as a function of current density at 77 K

Download (215KB)
9. Fig. 8. Total loss in a CORC® cable as a function of current density at different temperatures

Download (334KB)

Copyright (c) 2024 Alexandrov D.A., Martirosian I.V., Pokrovskii S.V., Zaletkina V.V., Rudnev I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

link to the archive of the previous title

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).