Energy capacity and energy losses of inductive energy storage device based on composite HTS tapes

封面

如何引用文章

全文:

详细

Aim. The aim of this study is to compare the performance of toroidal and solenoidal configurations of a superconducting inductive energy storage device using CORC® and racetrack cables made from high-temperature superconducting tapes.

Methods. A numerical multiphysics analysis of inductive energy storage device was performed using the finite element method in the Comsol Multiphysics engineering modeling environment.

Results. The analysis revealed that the CORC® cable in a solenoid configuration, with a transport current density to critical current density ratio of 0.7 at the boiling point of liquid nitrogen, was the most suitable for inductive energy storage.

Conclusion. The developed numerical model allows to calculate energy capacity and energy losses in superconducting inductive energy storage devices configured as solenoids or toroids. This model can be applied to the development of inductive storage devices made from HTS composites.

作者简介

Dmitry Alexandrov

National research nuclear university MEPHI

编辑信件的主要联系方式.
Email: cfrfcfrfdima123@gmail.com
ORCID iD: 0009-0001-7383-0094
SPIN 代码: 5365-6190

research engineer

俄罗斯联邦, Moscow

Irina Martirosian

National research nuclear university MEPHI

Email: mephizic@gmail.com
ORCID iD: 0000-0003-2301-1768
SPIN 代码: 3368-8809

PhD in Physics and Mathematics, PhD, research engineer

俄罗斯联邦, Moscow

Sergey Pokrovskii

National research nuclear university MEPHI

Email: sergeypokrovskii@gmail.com
ORCID iD: 0000-0002-3137-4289
SPIN 代码: 6643-7817

PhD in Physics and Mathematics, Head of the Laboratory

俄罗斯联邦, Moscow

Victoria Zaletkina

National research nuclear university MEPHI

Email: viktoriazaletkina@gmail.com
ORCID iD: 0009-0009-9854-5028

research engineer

俄罗斯联邦, Moscow

Igor Rudnev

National research nuclear university MEPHI

Email: iarudnev@mephi.ru
ORCID iD: 0000-0002-5438-2548
SPIN 代码: 2070-5265

Doctor of Physical and Mathematical Sciences, Professor, Lead Research Fellow

俄罗斯联邦, Moscow

参考

  1. Adetokun BB, Muriithi CM, Ojo JO. Voltage stability analysis and improvement of power system with increased SCIG-based wind system integration. IEEE PES/IAS PowerAfrica. 2020;2020:1–5. doi: 10.1109/PowerAfrica49420.2020.9219803
  2. Adetokun BB, Ojo JO, Muriithi CM. Reactive power-voltage-based voltage instability sensitivity indices for power grid with increasing renewable energy penetration. IEEE Access. 2020;8:85401–85410. doi: 10.1109/ACCESS.2020.2992194
  3. Amiryar ME, Pullen KR. A review of flywheel energy storage system technologies and their applications. Applied Sciences. 2017;7(2):286. doi: 10.3390/app7030286
  4. Saikia BK. A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel. 2020;282:118796. doi: 10.1016/j.fuel.2020.118796
  5. Connolly D. The technical and economic implications of integrating fluctuating renewable energy using energy storage. Renewable energy. 2012;43:47–60.
  6. Wang JS, Zeng Y, Huang H, et.al. The first man-loading high temperature superconducting maglev test vehicle in the world. Physica C. 2002;378–381(1):809–814. doi: 10.1016/S0921-4534(02)01548-4
  7. Song M. 100 kJ/50 kW HTS SMES for micro-grid. IEEE Transactions on Applied Superconductivity. 2014;25(3):1–6. doi: 10.1109/TASC.2014.2386345
  8. Mukherjee P, Rao VV. Design and development of high temperature superconducting magnetic energy storage for power applications-A review. Physica C: Superconductivity and its applications. 2019;563:67–73. doi: 10.1016/j.physc.2019.05.001
  9. Ali MH, Wu B, Dougal RA. An overview of SMES applications in power and energy systems. IEEE transactions on sustainable energy. 2010;1(1):38–47. doi: 10.1109/TSTE.2010.2044901
  10. Adetokun BB, Oghorada O, Abubakar SJ. Superconducting magnetic energy storage systems: Prospects and challenges for renewable energy applications. Journal of Energy Storage. 2022;55:105663. doi: 10.1109/TSTE.2010.2044901
  11. Yagotintsev K, Anvar VA, Gao P, et al. AC loss and contact resistance in REBCO CORC®, Roebel, and stacked tape cables. Superconductor science and technology. 2020;33(8):085009. doi: 10.1088/1361-6668/ab97ff
  12. Cardozo NJL, ten Kate HJJ, Dudarev MA. Development of the First ReBCO-CORC Based Racetrack Model Coil. [Student thesis: Master] Eindhoven, 2018.
  13. Yeom HK. Study of cryogenic conduction cooling systems for an HTS SMES. IEEE transactions on applied superconductivity. 2007;17(2):1955–1958. doi: 10.1109/TASC.2007.898491
  14. Molodyk A. Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion. Scientific reports. 2021;11(1):2084. doi: 10.1038/s41598-021-81559-z
  15. Zubko VV. Heat transfer simulation to liquid nitrogen from HTS tapes at the overload currents. Physics Procedia. 2015;67:619–624. doi: 10.1016/j.phpro.2015.06.105
  16. Saichi Y, Miyagi D, Tsuda MA. Suitable design method of SMES coil for reducing superconducting wire usage considering maximum magnetic flux density. IEEE transactions on applied superconductivity. 2013:24(3):1–5. doi: 10.1109/TASC.2013.2290279

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Experimental critical surface

下载 (130KB)
3. Fig. 2. Architecture of HTSC tape SuperOx

下载 (137KB)
4. Fig. 3. Cable schematic diagram CORC®

下载 (82KB)
5. Fig. 4. Schematic diagram of a racetrack coil

下载 (55KB)
6. Fig. 5. Geometry of analyzed configurations. Left: SPIN with toroidal geometry; Right – SPIN with solenoidal geometry

下载 (134KB)
7. Fig. 6. Magnetic field induction rate and magnetic lines: a – in solenoidal SPIN; b – in toroidal SPIN at an operating current of 5 kA

下载 (570KB)
8. Fig. 7. Total loss in racetrack and CORC® cable as a function of current density at 77 K

下载 (215KB)
9. Fig. 8. Total loss in a CORC® cable as a function of current density at different temperatures

下载 (334KB)

版权所有 © Alexandrov D.A., Martirosian I.V., Pokrovskii S.V., Zaletkina V.V., Rudnev I.A., 2024

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

link to the archive of the previous title

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).