VEGF-dependent angiogenesis in therapeutic pathomorphosis of breast cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

INTRODUCTION: The involvement of angiogenic factors in the tumor progression and invasion processes, in escape from immunological surveillance and alterations in the signal sensitivity implicates the perspectiveness of investigating VEGF-dependent angiogenesis in the context of therapeutic regression of breast cancer (BC).

AIM: To study the immunohistochemical features of angiogenesis markers: vascular endothelial growth factor (VEGF), angiopoietin 2 (Ang2) and its receptor tyrosine kinase (Tie2), depending on the degree of breast carcinoma regression with the underlying neoadjuvant chemotherapy (NACT).

METHODS: The study included 65 patients with verified locally advanced breast cancer and 10 patients with proliferative fibrocystic disease. Breast cancer patients underwent NACT according to the following regimen: 5-fluorouracil 500 mg/m2, adriamycin (=doxorubicin) 50 mg/m2, cyclophosphamide (FAC) 500 mg/m2. At the screening stage, a core needle biopsy of the breast tumor was performed, and an examination of the surgical material upon completion of NACT. The key marker for breast cancer, the human epidermal growth factor receptor-2 (Her2/neu), and angiogenesis markers (VEGF-A, Ang2, Tie2) were assessed using the immunohistochemical method, and morphological regression of the tumor was determined using the residual cancer burden (RCB) system.

RESULTS: The most common type of breast carcinoma is invasive ductal breast carcinoma, luminal A, Her2/neu-negative subtype. Immunohistochemical characteristics of breast carcinoma angiogenesis are independent of the morphological and surrogate molecular subtype of tumor. Parameters of angiogenesis activity (VEGF-A, Ang2, Tie2) are maximally expressed in patients with the proliferative fibrocystic disease and BC before the start of NACT. NACT produces a weak suppressive effect on the parameters of angiogenesis activity irrespective of tumor type.

CONCLUSION: Objectification of the obtained results and clarification of the specific angiogenesis features in BC patients undergoing neoadjuvant chemotherapy requires further investigation of this matter using additional molecular genetic methods. We believe it would be appropriate to conduct experimental studies of the effects of cytostatic agents in various regimens (including ultra-low doses), as well as to conduct additional studies on the role of integrins and Notch receptors.

About the authors

Kazim A. Aliev

V.I. Vernadsky Crimean Federal University

Email: k8929199@gmail.com
ORCID iD: 0000-0003-3911-1245
SPIN-code: 5975-5240

MD, Cand. Sci. (Medicine)

Russian Federation, Simferopol

Elena P. Golubinskaya

V.I. Vernadsky Crimean Federal University

Email: missive@mail.ru
ORCID iD: 0000-0003-3917-924X
SPIN-code: 8896-7481

MD, Dr. Sci. (Medicine)

Russian Federation, Simferopol

Evgeniya Y. Zyablitskaya

V.I. Vernadsky Crimean Federal University

Author for correspondence.
Email: evgu79@mail.ru
ORCID iD: 0000-0001-8216-4196
SPIN-code: 2267-3643

MD, Dr. Sci. (Medicine)

Russian Federation, Simferopol

Anna V. Serebryakova

V.I. Vernadsky Crimean Federal University

Email: any_serebrycova03061996@mail.ru
ORCID iD: 0000-0002-1048-5158
SPIN-code: 5045-1140
Russian Federation, Simferopol

Leya E. Sorokina

V.I. Vernadsky Crimean Federal University

Email: leya.sorokina@mail.ru
ORCID iD: 0000-0002-1862-6816
SPIN-code: 5934-0679
Russian Federation, Simferopol

References

  1. Semiglazov VF, Donskikh RV, Tseluyko AI. End Results Adjuvant Trastuzumab in Patient with HER2-Positive Early Breast Cancer. Effective Pharmacotherapy. 2020;16(11):42–45. doi: 10.33978/2307-3586-2020-16-11-42-45 EDN: CEABBM
  2. Kolyadina IV, Poddubnaya IV, Pavlikova OA, et al. The evolution of neoadjuvant approach in primary operable breast cancer last decade: modern trend or a real clinical practice? Journal of Modern Oncology. 2017;19(1):9–16. EDN: ZBKMZL
  3. Caswell-Jin JL, Lorenz C, Curtis C. Molecular Heterogeneity and Evolution in Breast Cancer. Annu Rev Cancer Biol. 2021;5(1):79–94. doi: 10.1146/annurev-cancerbio-060220-014137 EDN: PTOEWY
  4. Hanker AB, Sudhan DR, Arteaga CL. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell. 2020;37(4):496–513. doi: 10.1016/j.ccell.2020.03.009 EDN: CGQVUM
  5. Wang R, Zhu Y, Liu X, et al. The clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer. BMC Cancer. 2019;19(1):1091. doi: 10.1186/s12885-019-6311-z EDN: BLXHHP
  6. Thuerigen O, Schneeweiss A, Toedt G, et al. Gene expression signature predicting pathologic complete response with gemcitabine, epirubicin, and docetaxel in primary breast cancer. J Clin Oncol. 2006;24(12):1839–1845. doi: 10.1200/jco.2005.04.7019 EDN: MFKORL
  7. Kaufmann M, von Minckwitz G, Smith R, et al. International expert panel on the use of primary (preoperative) systemic treatment of operable breast cancer: review and recommendations. J Clin Oncol. 2003;21(13):2600–2608. doi: 10.1200/jco.2003.01.136 EDN: MAJFUN
  8. Kiso M, Tanaka S, Saji S, et al. Long isoform of VEGF stimulates cell migration of breast cancer by filopodia formation via NRP1/ARHGAP17/Cdc42 regulatory network. Int J Cancer. 2018;143(11):2905–2918. doi: 10.1002/ijc.31645 EDN: PASLMV
  9. De Paola F, Granato AM, Scarpi E, et al. Vascular endothelial growth factor and prognosis in patients with node-negative breast cancer. Int J Cancer. 2002;98(2):228–233. doi: 10.1002/ijc.10118
  10. Kostopoulos I, Arapantoni-Dadioti P, Gogas H, et al. Evaluation of the prognostic value of HER-2 and VEGF in breast cancer patients participating in a randomized study with dose-dense sequential adjuvant chemotherapy. Breast Cancer Res Treat. 2006;96(3):251–261. doi: 10.1007/s10549-005-9062-2 EDN: WZYBKB
  11. Mohammed RAA, Green A, El-Shikh S, et al. Prognostic significance of vascular endothelial cell growth factors -A, -C and -D in breast cancer and their relationship with angio- and lymphangiogenesis. Br J Cancer. 2007;96(7):1092–1100. doi: 10.1038/sj.bjc.6603678 EDN: LLAAUO
  12. González-González A, González A, Alonso-González C, et al. Complementary actions of melatonin on angiogenic factors, the angiopoietin/Tie2 axis and VEGF, in co-cultures of human endothelial and breast cancer cells. Oncol Rep. 2018;39(1):433–441. doi: 10.3892/or.2017.6070
  13. Stryker ZI, Rajabi M, Davis PJ, Mousa SA. Evaluation of Angiogenesis Assays. Biomedicines. 2019;7(2):37. doi: 10.3390/biomedicines7020037
  14. Ferrara N. Molecular Basis of Angiogenesis and its Application. Keio J Med. 2024;73(1):12. doi: 10.2302/kjm.abstract_73_1-1 EDN: XSWFPX
  15. Schirosi L, De Summa S, Tommasi S, et al. VEGF and TWIST1 in a 16-biomarker immunoprofile useful for prognosis of breast cancer patients. Int J Cancer. 2017;141(9):1901–1911. doi: 10.1002/ijc.30868 EDN: YGTWTY
  16. Linderholm B, Grankvist K, Wilking N, et al. Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. J Clin Oncol. 2000;18(7):1423–1431. doi: 10.1200/jco.2000.18.7.1423
  17. Kumar GL, Rudbeck L, editors. Immunohistochemical Staining Methods. 5th ed. Dako North America, Carpinteria, California; 2009.
  18. Rosen LS. Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control. 2002;9(2 Suppl):36–44. doi: 10.1177/107327480200902s05
  19. Ward NL, Dumont DJ. The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Semin Cell Dev Biol. 2002;13(1):19–27. doi: 10.1006/scdb.2001.0288
  20. Davis S, Papadopoulos N, Aldrich TH, et al. Angiopoietins have distinct modular domains essential for receptor binding, dimerization and superclustering. Nat Struct Biol. 2003;10(1):38–44. doi: 10.1038/nsb880
  21. Brown LF, Berse B, Jackman RW, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol. 1995;26(1):86–91. doi: 10.1016/0046-8177(95)90119-1
  22. Goussia A, Simou N, Zagouri F, et al. Associations of angiogenesis-related proteins with specific prognostic factors, breast cancer subtypes and survival outcome in early-stage breast cancer patients. A Hellenic Cooperative Oncology Group (HeCOG) trial. PLoS One. 2018;13(7):e0200302. doi: 10.1371/journal.pone.0200302
  23. Dong Z, Chen J, Yang X, et al. Ang-2 promotes lung cancer metastasis by increasing epithelial-mesenchymal transition. Oncotarget. 2018;9(16):12705–12717. doi: 10.18632/oncotarget.24061
  24. Chen Y, Wu Y, Zhang X, et al. Angiopoietin-2 (Ang-2) is a useful serum tumor marker for liver cancer in the Chinese population. Clin Chim Acta. 2018;478:18–27. doi: 10.1016/j.cca.2017.12.017
  25. Li P, He Q, Luo C, Qian L. Diagnostic and prognostic potential of serum angiopoietin-2 expression in human breast cancer. Int J Clin Exp Pathol. 2015;8(1):660–664.
  26. Rykala J, Przybylowska K, Majsterek I, et al. Angiogenesis markers quantification in breast cancer and their correlation with clinico-pathological prognostic variables. Pathol Oncol Res. 2011;17(4):809–817. doi: 10.1007/s12253-011-9387-6 EDN: NDUGFJ
  27. Tiainen L, Korhonen EA, Leppänen V-M, et al. High baseline Tie1 level predicts poor survival in metastatic breast cancer. BMC Cancer. 2019;19(1):732. doi: 10.1186/s12885-019-5959-8 EDN: BADAXY
  28. Imyanitov EN. Angiogenesis as a target for cancer therapy. Journal of Modern Oncology. 2014;16(2):28–33. EDN: SHVIPF
  29. Browder T, Butterfield CE, Kräling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug resistant cancer. Cancer Res. 2000;60(7):1878–1886.
  30. Klement G, Baruchel S, Rak J, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest. 2000;105(8):R15–R24. doi: 10.1172/jci8829 Erratum in: J Clin Invest. 2006;116(11):3084. Erratum in: J Clin Invest. 2006;116(10):2827. doi: 10.1172/JCI08829C1
  31. Kerbel RS. Improving Conventional or Low Dose Metronomic Chemotherapy with Targeted Antiangiogenic Drugs. Cancer Res Treat. 2007;39(4):150–159. doi: 10.4143/crt.2007.39.4.150 DOI: https://doi.org/10.17816/PAVLOVJ629435 EDN: OLQANG

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).