Biomechanical parameters of the fibrous capsule of the eyeball in pseudoexfoliative glaucoma in comparison with primary open-angle glaucoma
- 作者: Malyshev A.V.1,2, Apostolova A.S.1,3, Sergienko A.A.1,4, Teshev A.F.1,5, Karapetov G.Y.1,2, Ashkhamakhova M.K.1,5, Khatsukova B.N.1,5
-
隶属关系:
- Maykop State Technological University
- Scientific Research Institution — Ochapovsky Regional Clinic Hospital No. 1
- Vision Care Clinic “3Z”
- Children’s Regional Clinical Hospital
- Adygean Republican Clinical Hospital
- 期: 卷 18, 编号 1 (2025)
- 页面: 25-34
- 栏目: Original study articles
- URL: https://ogarev-online.ru/ov/article/view/312591
- DOI: https://doi.org/10.17816/OV630644
- ID: 312591
如何引用文章
详细
BACKGROUND: Pseudoexfoliation syndrome is currently considered as a systemic disorder of the connective tissue metabolism with the accumulation in all corneal cell layers of pseudoexfoliation syndrome deposits, which disrupt corneal morphology and biomechanics.
AIM: to study the features of biomechanical parameters of the fibrous capsule of eyes in primary open-angle glaucoma (POAG) in comparison with those in pseudoexfoliative glaucoma (PEG).
MATERIALS AND METHODS: We compared 65 eyes with POAG and 77 eyes with PEG aged under 80 years. The control group consisted of 18 healthy eyes. Biomechanical indicators were compared, such as: DA Ratio, Integr. Radius, SP-A1, SSI, BGF, biomechanically corrected intraocular pressure (bIOP) obtained with Pentacam (Oculus) and CorVis ST.
RESULTS: Patients with PEG were elder (68.013 ± 0.75 years) in contrast to POAG patients (60.03 ± 1.05 years) (p = 0.001), had a thinner central retinal thickness (CRT) — 543.99 ± 3.9 µm versus 559.33 ± 4.4 µm in those with POAG (p = 0.010). The IOP level did not differ between groups, and no correlation with CRT was detected. Indicators of corneal stiffness: DA ratio Integr. Radius did not differ between POAG, PEG and control group. The SP-A1 parameter also did not differ between POAG and PEG patients, while there were differences between PEG patients and the control group (p = 0.046). Moreover, in eyes with POAG, SP-A1 directly correlates with IOP Ро (p = 0.001) and CRT (p = 0.001), in those with PEG — p = 0.001 and p = 0.001, respectively. The SSI index in PEG was higher and amounted to 1.38 ± 0.03 versus 1.27 ± 0.03 in POAG (p = 0.013), while it correlated with age only in the case of PEG (p = 0.007). A correlation between SSI and CTR was also revealed — in POAG (p = 0.018), in PEG (p = 0.001). In PEG, BGF shows higher values (25.92 ± 2.3) than in POAG (17.71 ± 2.2; p = 0.010). BGF has no correlation with age (p = 0.094 and p = 0.737 for POAG and PEG, respectively), depends on CRT (p = 0.001 and p = 0.027, respectively), on bIOP (p = 0.001 and p = 0.001, respectively), and on SP-A1 (p = 0.009 and p = 0.001, respectively). The only parameter that was higher in PEG than in POAG was SSI, which did not correlate with the BGF indicator (p = 0.642 and p = 0.327, respectively).
CONCLUSIONS: We did not find any fundamental differences in biomechanics between PEG and POAG, which could explain the significant rates of progression of PEG. Based on our data, it is obvious that the eye with PEG differs from that with POAG being more rigid, even at similar IOP values.
作者简介
Alexey Malyshev
Maykop State Technological University; Scientific Research Institution — Ochapovsky Regional Clinic Hospital No. 1
Email: mavr189@yandex.ru
ORCID iD: 0000-0002-1448-9690
SPIN 代码: 1381-6881
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, 191 Pervomaiskaya st., Maykop, 385000, Adygea Republic; KrasnodarAnastasiya Apostolova
Maykop State Technological University; Vision Care Clinic “3Z”
编辑信件的主要联系方式.
Email: apostolovan@mail.ru
ORCID iD: 0009-0006-3177-4342
SPIN 代码: 7470-4628
MD, Cand. Sci. (Medicine)
俄罗斯联邦, 191 Pervomaiskaya st., Maykop, 385000, Adygea Republic; KrasnodarAleksey Sergienko
Maykop State Technological University; Children’s Regional Clinical Hospital
Email: eyesurg@mail.ru
ORCID iD: 0000-0002-0285-4080
SPIN 代码: 4114-9050
MD, Cand. Sci. (Medicine)
俄罗斯联邦, 191 Pervomaiskaya st., Maykop, 385000, Adygea Republic; KrasnodarAdam Teshev
Maykop State Technological University; Adygean Republican Clinical Hospital
Email: adam.teshev@gmail.com
ORCID iD: 0009-0002-2434-7538
SPIN 代码: 1548-8310
MD, Chief ophthalmologist of the Ministry of Health Republic of Adygea
俄罗斯联邦, 191 Pervomaiskaya st., Maykop, 385000, Adygea Republic; Maikop, Adygea RepublicGarry Karapetov
Maykop State Technological University; Scientific Research Institution — Ochapovsky Regional Clinic Hospital No. 1
Email: garry.karapetov@gmail.com
ORCID iD: 0000-0002-1511-1219
SPIN 代码: 7360-7360
MD, Cand. Sci. (Medicine)
俄罗斯联邦, 191 Pervomaiskaya st., Maykop, 385000, Adygea Republic; KrasnodarMarina Ashkhamakhova
Maykop State Technological University; Adygean Republican Clinical Hospital
Email: mashkhamakhova@gmail.ru
ORCID iD: 0009-0000-0838-2013
MD
俄罗斯联邦, 191 Pervomaiskaya st., Maykop, 385000, Adygea Republic; Maikop, Adygea RepublicBella Khatsukova
Maykop State Technological University; Adygean Republican Clinical Hospital
Email: bella-0191@mail.ru
ORCID iD: 0009-0002-3728-8469
MD
俄罗斯联邦, 191 Pervomaiskaya st., Maykop, 385000, Adygea Republic; Maikop, Adygea Republic参考
- Nazarali S, Damji F, Damji KF. What have we learned about exfoliation syndrome since its discovery by John Lindberg 100 years ago? Br J Ophthalmol. 2018;102(10):1342–1350. doi: 10.1136/bjophthalmol-2017-311321
- Ritch R, Schlötzer-Schrehardt U. Exfoliation syndrome. Surv Ophthalmol. 2001;45(4):265–315. doi: 10.1016/s0039-6257(00)00196-x
- Zheng X, Shiraishi A, Okuma S, et al. In vivo confocal microscopic evidence of keratopathy in patients with pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci. 2011;52(3):1755–1761. doi: 10.1167/iovs.10-6098
- Ayala M. Corneal hysteresis in normal subjects and in patients with primary open-angle glaucoma and pseudoexfoliation glaucoma. Ophthalmic Res. 2011;46(4):187–191. doi: 10.1159/000326896
- Fortune B, Reynaud J, Hardin C, et al. Experimental glaucoma causes optic nerve head neural rim tissue compression: a potentially important mechanism of axon injury. Invest Ophthalmol Vis Sci. 2016;57(10):4403–4411. doi: 10.1167/iovs.16-20000
- Musch DC, Shimizu T, Niziol LM, et al. Clinical characteristics of newly diagnosed primary, pigmentary and pseudoexfoliative open-angle glaucoma in the Collaborative Initial Glaucoma Treatment Study. Br J Ophthalmol. 2012;96(9):1180–1184. doi: 10.1136/bjophthalmol-2012-301820
- Liu Q, Pang C, Liu C, et al. Correlations among corneal biomechanical parameters, stiffness, and thickness measured using Corvis ST and Pentacam in patients with ocular hypertension. J Ophthalmol. 2022;2022:7387581. doi: 10.1155/2022/7387581
- Eliasy A, Chen KJ, Vinciguerra R, et al. Determination of corneal biomechanical behavior in-vivo for healthy eyes using Corvis ST tonometry: stress-strain index. Front Bioeng Biotechnol. 2019;7:105. doi: 10.3389/fbioe.2019.00105
- Mitchell P, Wang JJ, Hourihan F. The relationship between glaucoma and pseudoexfoliation: the Blue Mountains Eye Study. Arch Ophthalmol. 1999;117(10):1319–1324. doi: 10.1001/archopht.117.10.1319
- Kumaran N, Girgis R. Pseudoexfoliative deposits on an intraocular lens implant. Eye (Lond). 2011;25(10):1378–1379. doi: 10.1038/eye.2011.159
- Palko JR, Qi O, Sheybani A. Corneal alterations associated with pseudoexfoliation syndrome and glaucoma: a literature review. J Ophthalmic Vis Res. 2017;12(3):312–324. doi: 10.4103/jovr.jovr_28_17
- Apostolova AS, Gurdzhijan KM, Shipilov VA. Corneal endothelium in eyes with pseudoexfoliation syndrome (data of endothelial microscopy). Ophthalmology in Russia. 2017;14(4):347–354. (In Russ.) EDN: URSBAK doi: 10.18008/1816-5095-2017-4-347-354
- Pradhan ZS, Deshmukh S, Dixit S, et al. A comparison of the corneal biomechanics in pseudoexfoliation glaucoma, primary open-angle glaucoma and healthy controls using Corvis ST. PLoS One. 2020;15(10):e0241296. doi: 10.1371/journal.pone.0241296
- Pradhan ZS, Deshmukh S, Dixit S, et al. A comparison of the corneal biomechanics in pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and healthy controls using Corvis® Scheimpflug Technology. Indian J Ophthalmol. 2020;68(5):787–792. doi: 10.4103/ijo.IJO_1550_19
- Qassim A, Mullany S, Abedi F, et al. Corneal stiffness parameters are predictive of structural and functional progression in glaucoma suspect eyes. Ophthalmology. 2021;128(7):993–1004. doi: 10.1016/j.ophtha.2020.11.021
- Subasi S, Yuksel N, Basaran E, Pirhan D. Comparison of vessel density in macular and peripapillary regions between primary open-angle glaucoma and pseudoexfoliation glaucoma using OCTA. Int Ophthalmol. 2021;41(1):173–184. doi: 10.1007/s10792-020-01564-5
- Cornelius A, Pilger D, Riechardt A, et al. Macular, papillary and peripapillary perfusion densities measured with optical coherence tomography angiography in primary open angle glaucoma and pseudoexfoliation glaucoma. Graefes Arch Clin Exp Ophthalmol. 2022;260(3):957–965. doi: 10.1007/s00417-021-05321-x
- Moghimi S, Mazloumi M, Johari M, et al. Evaluation of lamina cribrosa and choroid in nonglaucomatous patients with pseudoexfoliation syndrome using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57(3):1293–1300. doi: 10.1167/iovs.15-18312
- Kim S, Sung KR, Lee JR, Lee KS. Evaluation of lamina cribrosa in pseudoexfoliation syndrome using spectral-domain optical coherence tomography enhanced depth imaging. Ophthalmology. 2013;120(9):1798–1803. doi: 10.1016/j.ophtha.2013.02.015
补充文件
