Biological activity of fullerenes - reality and prospects

Cover Page

Cite item

Full Text

Abstract

Abstract. The review deals with the properties of fullerenes and their derivatives and the possibility of their use in biology and medicine. Fullerenes can exert an antioxidant effect in biological systems, catching active forms of oxygen, and oxidative, giving the fullerene photosensitizing properties. The lipophilic fullerene molecules possessing membrane — tropic action interact with various biological structures and can change the functions of these structures, increasing the lipophilicity of the active molecule (amino acids, nucleic acids, proteins, etc.). Data on the biological effect of fullerenes in in vitro and in vivo experiments are given. Examples of targeted delivery of known therapeutic agents.

About the authors

Marina A. Dumpis

Institute of Experimental Medicine

Author for correspondence.
Email: mardoom@mail.ru

PhD (Chemistry), Leading Researcher, Laboratory of Synthesis and Nanothechnology of Drugs

Russian Federation, Saint Petersburg

Dmitrii N. Nikolayev

Institute of Experimental Medicine

Email: pp225@yandex.ru

Scientific Researcher, Laboratory of Synthesis and Nanothechnology of Drugs, S.V. Anichkov Dept. of Neuropharmacology

Russian Federation, Saint Petersburg

Elena V. Litasova

Institute of Experimental Medicine

Email: llitasova@mail.ru

PhD (Biology), Senior Researcher, Laboratory of Synthesis and Nanothechnology of Drugs, S.V. Anichkov Dept. of Neuropharmacology

Russian Federation, Saint Petersburg

Viktor V. Iljin

Institute of Experimental Medicine

Email: victor.iljin@mail.ru

PhD (Chemistry), Scientific Researcher, Laboratory of Synthesis and Nanothechnology of Drugs, S.V. Anichkov Dept. of Neuropharmacology

Russian Federation, Saint Petersburg

Mariya A. Brusina

Institute of Experimental Medicine

Email: mashasemen@mail.ru

Junior Researcher, Laboratory of Synthesis and Nanothechnology of Drugs, S.V. Anichkov Dept. of Neuropharmacology

Russian Federation, Saint Petersburg

Levon B. Piotrovsky

Institute of Experimental Medicine

Email: levon-piotrovsky@yandex.ru

Dr. Biol. Sci., Professor, Head, Laboratory of Synthesis and Nanothechnology of Drugs, S.V. Anichkov Dept. of Neuropharmacology

Russian Federation, Saint Petersburg

References

  1. Teradal NL, Jelinek R. Carbon Nanomaterials in Biological Studies and Biomedicine. Adv Healthc Mater. 2017;6(17): 1700574. doi: 10.1002/adhm.201700574.
  2. Пиотровский Л.Б. Очерки о наномедицине. – СПб.: Европейский дом, 2013. [Piotrovskiy LB. Essays on nanomedicine. Saint Petersburg: Evropeyskiy dom; 2013. (In Russ.)]
  3. Zhang GP, Sun X, George TF. Nonlinear optical response and ultrafast dynamics in C60. J Phys Chem A. 2009;113(7):1175-1188. doi: 10.1021/jp802244b.
  4. Albert K, Hsu HY. Carbon-Based Materials for Photo-Triggered Theranostic Applications. Molecules. 2016;21(11). doi: 10.3390/molecules21111585.
  5. Osawa E. Superaromaticity. Kаgaku. 1970;25:854-863.
  6. Бочвар Д.А., Гальперн Е.Г. О гипотетических системах: карбододекаэдре, s-икозаэдране и карбо-s-икозаэдране // Доклады Академии наук СССР. – 1973. – Т. 209. – № 3. – С. 610–612. [Bochvar DA, Gal’pern EG. On hypothetical systems: carbododecahedron, s-icosahedron and carbo-s-icosahedron. Dokl Akad Nauk SSSR. 1973;209(3):610-612. (In Russ.)]
  7. Елецкий А.В., Смирнов Б.М. Фуллерены и структуры углерода // Успехи физических наук. – 1995. – Т. 165. – № 9. – С. 977–1009. [Eletskiy AV, Smirnov BM. Fullerines and the structures of carbon. Uspekhi fizicheskikh nauk. 1995;165(9):977-1009. (In Russ.)]. doi: 10.3367/UFNr.0165.199509a.0977.
  8. Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии. – СПб.: Росток, 2006. [Piotrovskiy LB, Kiselev OI. Fullerenes in Biology. Saint Petersburg: Rostok; 2006. (In Russ.)]
  9. Jafvert CT, Kulkarni PP. Buckminsterfullerene’s (C60) Octanol-Water Partition Coefficient (Kow) and Aqueous Solubility. Environ Sci Technol. 2008;42(16):5945-5950. doi: 10.1021/es702809a.
  10. Piotrovsky LB, Kiselev OI. Fullerenes and Viruses. Fullerenes, Nanotubes and Carbon Nanostructures. 2005;12(1-2):397-403. doi: 10.1081/fst-120027198.
  11. Piotrovskiy LB, Litasova EV, Dumpis MA, et al. Enhan ced brain penetration of hexamethonium in complexes with derivatives of fullerene C60. Dokl Biochem Biophys. 2016;468(1):173-175. doi: 10.1134/S1607672916030030.
  12. Sijbesma R, Srdanov G, Wudl F, et al. Synthesis of a fullerene derivative for the inhibition of HIV enzymes. J Am Chem Soc. 1993;115(15):6510-6512. doi: 10.1021/ja00068a006.
  13. Penkova AV, Acquah SF, Piotrovskiy LB, et al. Fullerene derivatives as nano-additives in polymer composites. Russian Chemical Reviews. 2017;86(6):530-566. doi: 10.1070/rcr4712.
  14. Witte P, Beuerle F, Hartnagel U, et al. Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70. Org Biomol Chem. 2007;5(22):3599-3613. doi: 10.1039/b711912g.
  15. Brettreich M, Hirsch A. A highly water-soluble dendro[60]fullerene. Tetrahedron Lett. 1998;39(18):2731-2734. doi: 10.1016/s0040-4039(98)00491-2.
  16. Semenov KN, Charykov NA, Keskinov VN. Fullerenol Synthesis and Identification. Properties of the Fullerenol Water Solutions. J Chem Eng Data. 2011;56(2):230-239. doi: 10.1021/je100755v.
  17. Dawid A, Gorny K, Gburski Z. The influence of distribution of hydroxyl groups on vibrational spectra of fullerenol C60(OH)24 isomers: DFT study. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136:1993-1997. doi: 10.1016/j.saa.2014.08.023.
  18. Khakina EA, Yurkova AA, Peregudov AS, et al. Highly selective reactions of C60Cl6 with thiols for the synthesis of functionalized [60]fullerene derivatives. Chem Commun (Camb). 2012;48(57):7158-7160. doi: 10.1039/c2cc32517a.
  19. Ильин В.В., Пиотровский Л.Б Исследование стабильности пленок фуллерена С60 // Обз. клин. фармакол. лек. тер. – 2017. – Т. 15. – №. 2. – С. 42–45. [Ilyin VV, Piotrovskii LB. The study of the stability of fullerene C60 films. Reviews on Clinical Pharmacology and Drug Therapy.2017;15(2):42-45. (In Russ.)]. doi: 10.17816/RCF15242-45.
  20. Lee J, Yamakoshi Y, Hughes JB, Kim J-H. Mechanism of C60 Photoreactivity in Water: Fate of Triplet State and Radical Anion and Production of Reactive Oxygen Species. Environ Sci Technol. 2008;42(9):3459-3464. doi: 10.1021/es702905g.
  21. Calvaresi M, Zerbetto F. Baiting proteins with C60. ACS Nano. 2010;4(4):2283-2299. doi: 10.1021/nn901809b.
  22. Maeda-Mamiya R, Noiri E, Isobe H, et al. In vivo gene delivery by cationic tetraamino fullerene. Proc Natl Acad Sci U S A. 2010;107(12):5339-5344. doi: 10.1073/pnas.0909223107.
  23. Zhao B, He YY, Bilski PJ, Chignell CF. Pristine (C60) and hydroxylated [C60(OH)24] fullerene phototoxicity towards HaCaT keratinocytes: type I vs type II mechanisms. Chem Res Toxicol. 2008;21(5):1056-1063. doi: 10.1021/tx800056w.
  24. Kong L, Zepp RG. Production and consumption of reactive oxygen species by fullerenes. Environ Toxicol Chem. 2012;31(1):136-143. doi: 10.1002/etc.711.
  25. Castro E, Martinez ZS, Seong CS, et al. Characterization of New Cationic N,N-Dimethyl[70]fulleropyrrolidinium Iodide Derivatives as Potent HIV-1 Maturation Inhibitors. J Med Chem. 2016;59(24):10963-10973. doi: 10.1021/acs.jmedchem.6b00994.
  26. Misra C, Kumar M, Sharma G, et al. Glycinated fullerenes for tamoxifen intracellular delivery with improved anticancer activity and pharmacokinetics. Nanomedicine (Lond). 2017;12(9):1011-1023. doi: 10.2217/nnm-2016-0432.
  27. Ikeda A, Mae T, Ueda M, et al. Improved photodynamic activities of liposome-incorporated [60]fullerene derivatives bearing a polar group. Chem Commun (Camb). 2017;53(20):2966-2969. doi: 10.1039/c7cc00302a.
  28. Asada R, Liao F, Saitoh Y, Miwa N. Photodynamic anti-cancer effects of fullerene [C60]-PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Mol Cell Biochem. 2014;390(1-2):175-184. doi: 10.1007/s11010-014-1968-8.
  29. Yang XL, Fan CH, Zhu HS. Photo-induced cytotoxicity of malonic acid [C60]fullerene derivatives and its mechanism. Toxicol In Vitro. 2002;16(1):41-46. doi: 10.1016/s0887-2333(01)00102-3.
  30. Doi Y, Ikeda A, Akiyama M, et al. Intracellular uptake and photodynamic activity of water-soluble [60]- and [70]fullerenes incorporated in liposomes. Chemistry. 2008;14(29):8892-8897. doi: 10.1002/chem.200801090.
  31. Ikeda A, Matsumoto M, Akiyama M, et al. Direct and short-time uptake of [70]fullerene into the cell membrane using an exchange reaction from a [70]fullerene-gamma-cyclodextrin complex and the resulting photodynamic activity. Chem Commun (Camb). 2009;(12):1547-1549. doi: 10.1039/b820768b.
  32. Sperandio FF, Sharma SK, Wang M, et al. Photoinduced electron-transfer mechanisms for radical-enhanced photodynamic therapy mediated by water-soluble decacationic C70 and C84O2 Fullerene Derivatives. Nanomedicine. 2013;9(4):570-579. doi: 10.1016/j.nano.2012.09.005.
  33. Mizuno K, Zhiyentayev T, Huang L, et al. Antimicrobial Photodynamic Therapy with Functionalized Fullerenes: Quantitative Structure-activity Relationships. J Nanomed Nanotechnol. 2011;2(2):1-9. doi: 10.4172/2157-7439.1000109.
  34. Yin R, Wang M, Huang YY, et al. Photodynamic therapy with decacationic [60]fullerene monoadducts: effect of a light absorbing electron-donor antenna and micellar formulation. Nanomedicine. 2014;10(4):795-808. doi: 10.1016/j.nano.2013.11.014.
  35. Injac R, Prijatelj M, Strukelj B. Fullerenol nanoparticles: toxicity and antioxidant activity. Methods Mol Biol. 2013;1028:75-100. doi: 10.1007/978-1-62703-475-3_5.
  36. Elshater AA, Haridy MAM, Salman MMA, et al. Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomed Phar macother. 2018;97:53-59. doi: 10.1016/j.biopha.2017.10.134.
  37. Zhou Y, Li J, Ma H, et al. Biocompatible [60]/[70] Fullerenols: Potent Defense against Oxidative Injury Induced by Reduplicative Chemotherapy. ACS Appl Mater Interfaces. 2017;9(41):35539-35547. doi: 10.1021/acsami.7b08348.
  38. Baati T, Bourasset F, Gharbi N, et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials. 2012;33(19):4936-4946. doi: 10.1016/j.biomaterials.2012.03.036.
  39. Inui S, Aoshima H, Nishiyama A, Itami S. Improvement of acne vulgaris by topical fullerene application: unique impact on skin care. Nanomedicine. 2011;7(2):238-241. doi: 10.1016/j.nano.2010.09.005.
  40. Xiao L, Takada H, Maeda K, et al. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed Pharmacother. 2005;59(7):351-358. doi: 10.1016/j.biopha.2005.02.004.
  41. Kato S, Aoshima H, Saitoh Y, Miwa N. Biological safety of LipoFullerene composed of squalane and fullerene-C60 upon mutagenesis, photocytotoxicity, and permeability into the human skin tissue. Basic Clin Pharmacol Toxicol. 2009;104(6):483-487. doi: 10.1111/j.1742-7843.2009.00396.x.
  42. Mousavi SZ, Nafisi S, Maibach HI. Fullerene nanoparticle in dermatological and cosmetic applications. Nanomedicine. 2017;13(3):1071-1087. doi: 10.1016/j.nano.2016.10.002.
  43. Bianco A, Corvaja C, Crisma M, et al. A Helical Peptide Receptor for [60]Fullerene. Chem Eur J. 2002;8(7):1544-1553. doi: 10.1002/1521-3765(20020402)8:7<1544::aid-chem1544>3.0.co;2-t.
  44. Qian M, Shan Y, Guan S, et al. Structural Basis of Fullerene Derivatives as Novel Potent Inhibitors of Protein Tyrosine Phosphatase 1B: Insight into the Inhibitory Mechanism through Molecular Modeling Studies. J Chem Inf Model. 2016;56(10):2024-2034. doi: 10.1021/acs.jcim.6b00482.
  45. Kataoka H, Ohe T, Takahashi K, et al. Novel fullerene derivatives as dual inhibitors of Hepatitis C virus NS5B polymerase and NS3/4A protease. Bioorg Med Chem Lett. 2016;26(19):4565-4567. doi: 10.1016/j.bmcl.2016.08.086.
  46. Ratnikova TA, Govindan PN, Salonen E, Ke PC. In vitro polymerization of microtubules with a fullerene derivative. ACS Nano. 2011;5(8):6306-6314. doi: 10.1021/nn201331n.
  47. Giust D, Leon D, Ballesteros-Yanez I, et al. Modulation of adenosine receptors by [60]fullerene hydrosoluble derivative in SK-N-MC cells. ACS Chem Neurosci. 2011;2(7):363-369. doi: 10.1021/cn200016q.
  48. Miao Y, Xu J, Shen Y, et al. Nanoparticle as signaling protein mimic: robust structural and functional modulation of CaMKII upon specific binding to fullerene C60 nanocrystals. ACS Nano. 2014;8(6):6131-6144. doi: 10.1021/nn501495a.
  49. Kim JE, Lee M. Fullerene inhibits β-amyloid peptide aggregation. Biochem Biophys Res Commun. 2003;303(2):576-579. doi: 10.1016/s0006-291x(03)00393-0.
  50. Bobylev AG, Shpagina MD, Bobyleva LG, et al. Antiamyloid properties of fullerene C60 derivatives. Biophysics. 2012;57(3):300-304. doi: 10.1134/s0006350912030050.
  51. Makarova EG, Gordon RY, Podolski IY. Fullerene C60 Prevents Neurotoxicity Induced by Intrahippocampal Microinjection of Amyloid-β Peptide. J Nanosci Nanotechnol. 2012;12(1):119-126. doi: 10.1166/jnn.2012.5709.
  52. Gordon R, Podolski I, Makarova E, et al. Intrahippocampal Pathways Involved in Learning/Memory Mechanisms are Affected by Intracerebral Infusions of Amyloid-β25-35 Peptide and Hydrated Fullerene C60 in Rats. J Alzheimers Dis. 2017;58(3):711-724. doi: 10.3233/JAD-161182.
  53. Bednarikova Z, Huy PD, Mocanu MM, et al. Fullerenol C60(OH)16 prevents amyloid fibrillization of Aβ40-in vitro and in silico approach. Phys Chem Chem Phys. 2016;18(28):18855-18867. doi: 10.1039/c6cp00901h.
  54. Xu X, Wang X, Li Y, et al. A large-scale association study for nanoparticle C60 uncovers mechanisms of nanotoxicity disrupting the native conformations of DNA/RNA. Nucleic Acids Res. 2012;40(16):7622-7632. doi: 10.1093/nar/gks517.
  55. Nedumpully Govindan P, Monticelli L, Salonen E. Mechanism of taq DNA polymerase inhibition by fullerene derivatives: insight from computer simulations. J Phys Chem B. 2012;116(35):10676-10683. doi: 10.1021/jp3046577.
  56. Pinteala M, Dascalu A, Ungurenasu C. Binding fullerenol C60(OH)24 to dsDNA. Int J Nanomedicine. 2009;4:193-199.
  57. An H, Jin B. DNA exposure to buckminsterfullerene (C60): toward DNA stability, reactivity, and replication. Environ Sci Technol. 2011;45(15):6608-6616. doi: 10.1021/es2012319.
  58. Bortolus M, Parisio G, Maniero AL, Ferrarini A. Monomeric fullerenes in lipid membranes: effects of molecular shape and polarity. Langmuir. 2011;27(20):12560-12568. doi: 10.1021/la202524r.
  59. Dugan LL, Turetsky DM, Du C, et al. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci U S A. 1997;94(17):9434-9439. doi: 10.1073/pnas.94.17.9434.
  60. Bosi S, Da Ros T, Spalluto G, Prato M. Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem. 2003;38(11-12):913-923. doi: 10.1016/j.ejmech.2003.09.005.
  61. Boutorine AS, Takasugi M, Hele`ne C, et al. Fullerene – Oligonucleotide Conjugates: Photoinduced Sequence-Specific DNA Cleavage. Angew Chem Int Ed Engl. 1995;33(2324):2462-2465. doi: 10.1002/anie.199424621.
  62. Da Ros T, Vazquez E, Spalluto G, et al. Design, synthesis and biological properties of fulleropyrrolidine derivatives as potential DNA photo-probes. J Supramol Chem. 2002;2(1-3):327-334. doi: 10.1016/s1472-7862(03)00089-3.
  63. Partha R, Mitchell LR, Lyon JL, et al. Buckysomes: Fullerene-Based Nanocarriers for Hydrophobic Molecule Delivery. ACS Nano. 2008;2(9):1950-1958. doi: 10.1021/nn800422k.
  64. Shi J, Zhang H, Wang L, et al. PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials. 2013;34(1):251-261. doi: 10.1016/j.biomaterials.2012.09.039.
  65. Liu Q, Xu L, Zhang X, et al. Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells. Chem Asian J. 2013;8(10):2370-2376. doi: 10.1002/asia.201300039.
  66. Rancan F, Helmreich M, Molich A, et al. Synthesis and in vitro testing of a pyropheophorbide-a-fullerene hexakis adduct immunoconjugate for photodynamic therapy. Bioconjug Chem. 2007;18(4):1078-1086. doi: 10.1021/bc0603337.
  67. Nishihara M, Perret F, Takeuchi T, et al. Arginine magic with new counterions up the sleeve. Org Biomol Chem. 2005;3(9):1659-1669. doi: 10.1039/b501472g.
  68. Sitharaman B, Zakharian TY, Saraf A, et al. Water-soluble fullerene (C60) derivatives as nonviral gene-delivery vectors. Mol Pharm. 2008;5(4):567-578. doi: 10.1021/mp700106w.
  69. Liu Z, Liang XJ. Nano-carbons as theranostics. Theranostics. 2012;2(3):235-237. doi: 10.7150/thno.4156.
  70. Ceron MR, Maffeis V, Stevenson S, Echegoyen L. Endohedral fullerenes: Synthesis, isolation, mono- and bis- functionalization. Inorg Chim Acta. 2017;468:16-27. doi: 10.1016/j.ica.2017.03.040.
  71. Liu JH, Cao L, Luo PG, et al. Fullerene-conjugated doxorubicin in cells. ACS Appl Mater Interfaces. 2010;2(5):1384-1389. doi: 10.1021/am100037y.
  72. Krishna V, Singh A, Sharma P, et al. Polyhydroxy Fullerenes for Non-Invasive Cancer Imaging and Therapy. Small. 2010;6(20):2236-2241. doi: 10.1002/smll.201000847.
  73. Shinohara H. Another big discovery-metallofullerenes. Philos Trans A Math Phys Eng Sci. 2016;374(2076). doi: 10.1098/rsta.2015.0325.
  74. Chai Y, Guo T, Jin C, et al. Fullerenes with metals inside. J Phys Chem. 1991;95(20):7564-7568. doi: 10.1021/j100173a002.
  75. Meng J, Liang X, Chen X, Zhao Y. Biological characterizations of [Gd@C82(OH)22]n nanoparticles as fullerene derivatives for cancer therapy. Integr Biol (Camb). 2013;5(1):43-47. doi: 10.1039/c2ib20145c.
  76. Diener MD, Alford JM, Kennel SJ, Mirzadeh S. 212Pb@C60 and Its Water-Soluble Derivatives: Synthesis, Stability, and Suitability for Radioimmunotherapy. J Am Chem Soc. 2007;129(16):5131-5138. doi: 10.1021/ja068639b.
  77. Zhen M, Zheng J, Ye L, et al. Maximizing the relaxivity of Gd-complex by synergistic effect of HSA and carboxylfullerene. ACS Appl Mater Interfaces. 2012;4(7):3724-3729. doi: 10.1021/am300817z.
  78. Shultz MD, Duchamp JC, Wilson JD, et al. Encapsulation of a radiolabeled cluster inside a fullerene cage, 177LuxLu(3 – x)N@C80: an interleukin-13-conjugated radiolabeled metallofullerene platform. J Am Chem Soc. 2010;132(14):4980-4981. doi: 10.1021/ja9093617.
  79. Bolskar RD. Gadofullerene MRI contrast agents. Nanomedicine (Lond). 2008;3(2):201-213. doi: 10.2217/17435889.3.2.201.
  80. Aschberger K, Johnston HJ, Stone V, et al. Review of fullerene toxicity and exposure – appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol. 2010;58(3):455-473. doi: 10.1016/j.yrtph.2010.08.017.
  81. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives. 2005;113(7):823-839. doi: 10.1289/ehp.7339.
  82. Gharbi N, Pressac M, Hadchouel M, et al. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005;5(12):2578-2585. doi: 10.1021/nl051866b.
  83. Popov VA, Tyunin MA, Zaitseva OB, et al. C60/PVP complex – No Toxicity after Introperitoneal Injection to Rats. Fullerenes, Nanotubes and Carbon Nanostructures. 2008;16(5-6):693-697. doi: 10.1080/15363830802317130.
  84. Dumpis MA, Iljin VV, Litasova EV, et al. The acute and sub-acute toxicity of C60/PVP complex in vivo. Adv Nano Res. 2016;4(3):167-179. doi: 10.12989/anr.2016.4.3.167.
  85. Yamago S, Tokuyama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol. 1995;2(6):385-389. doi: 10.1016/1074-5521(95)90219-8.
  86. Snyder RW, Fennell TR, Wingard CJ, et al. Distribution and biomarker of carbon-14 labeled fullerene C60 ([14C(U)]C60) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol. 2015;35(12):1438-1451. doi: 10.1002/jat.3177.
  87. Wang C, Bai Y, Li H, et al. Surface modification-mediated biodistribution of 13C-fullerene C60 in vivo. Part Fibre Toxicol. 2016;13:14. doi: 10.1186/s12989-016-0126-8.
  88. Shipelin VA, Smirnova TA, Gmoshinskii IV, Tutelyan VA. Analysis of toxicity biomarkers of fullerene C60 nanoparticles by confocal fluorescent microscopy. Bull Exp Biol Med. 2015;158(4):443-449. doi: 10.1007/s10517-015-2781-4.
  89. Zhao Y, Fang Y, Jiang Y. Fluorescence study of fullerene in organic solvents at room temperature. Spectrochim Acta A Mol Biomol Spectrosc. 2006;64(3):564-567. doi: 10.1016/j.saa.2005.07.054.
  90. Wu F, Bai Y, Mu Y, et al. Fluorescence quenching of fulvic acids by fullerene in water. Environ Pollut. 2013;172:100-107. doi: 10.1016/j.envpol.2012.08.005.
  91. Pal D, Bhattacharya S. Absorption spectrophotometric, fluorescence and theoretical investigations on supramolecular interaction of a designed bisporphyrin with C60 and C70. Spectrochim Acta A Mol Biomol Spectrosc. 2011;79(3):638-645. doi: 10.1016/j.saa.2011.03.050.
  92. Yu W-D, Nie Y-M, Yuan H, et al. Synthesis and characterization of a highly stable zinc phenylporphyrin Isoxazoline-[60] fullerene dyad: Impact of coordination on the redox and fluorescence properties. Inorg Chem Commun. 2017;84:134-137. doi: 10.1016/j.inoche.2017.08.014.
  93. Ray A, Santhosh K, Bhattacharya S. Absorption spectrophotometric, fluorescence, transient absorption and quantum chemical investigations on fullerene/phthalocyanine supramolecular complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2011;78(5):1364-1375. doi: 10.1016/j.saa.2011.01.011.
  94. Xu K, Liu F, Ma J, Tang B. A new specific fullerene-based fluorescent probe for trypsin. Analyst. 2011;136(6):1199-1203. doi: 10.1039/c0an00576b.
  95. Schuetze C, Ritter U, Scharff P, et al. Interaction of N-fluorescein-5-isothiocyanate pyrrolidine-C60 with a bimolecular lipid model membrane. Mater Sci Eng C. 2011;31(5):1148-1150. doi: 10.1016/j.msec.2011.02.026.
  96. Navarro DA, Kookana RS, McLaughlin MJ, Kirby JK. Fate of radiolabeled C60 fullerenes in aged soils. Environ Pollut. 2017;221:293-300. doi: 10.1016/j.envpol.2016.11.077.
  97. Vlasova, II, Kapralov AA, Michael ZP, et al. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications. Toxicol Appl Pharmacol. 2016;299:58-69. doi: 10.1016/j.taap.2016.01.002.
  98. Litasova EV, Iljin VV, Sokolov AV, et al. The biodegradation of fullerene C60 by myeloperoxidase. Dokl Biochem Biophys. 2016;471(1):417-420. doi: 10.1134/S1607672916060119.
  99. Lapin NA, Vergara LA, Mackeyev Y, et al. Biotransport kinetics and intratumoral biodistribution of malonodiserinolamide-derivatized [60]fullerene in a murine model of breast adenocarcinoma. Int J Nanomedicine. 2017;12:8289-8307. doi: 10.2147/IJN.S138641.

Copyright (c) 2018 Dumpis M.A., Nikolayev D.N., Litasova E.V., Iljin V.V., Brusina M.A., Piotrovsky L.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».