Биологическая активность фуллеренов - реалии и перспективы
- Авторы: Думпис М.А.1, Николаев Д.Н.1, Литасова Е.В.1, Ильин В.В.1, Брусина М.А.1, Пиотровский Л.Б.1
-
Учреждения:
- ФГБНУ «Институт экспериментальной медицины»
- Выпуск: Том 16, № 1 (2018)
- Страницы: 4-20
- Раздел: Статьи
- URL: https://ogarev-online.ru/RCF/article/view/8775
- DOI: https://doi.org/10.17816/RCF1614-20
- ID: 8775
Цитировать
Полный текст
Аннотация
Резюме. В обзоре рассмотрены свойства фуллеренов и их производных и возможность их применения в биологии и медицине. Фуллерены могут оказывать в биологических системах как антиоксидантное действие, улавливая активные формы кислорода (АФК), так и окислительное, придавая фуллерену фотосенситизирующие свойства. Обладающие мембранотропным действием, липофильные молекулы фуллеренов взаимодействуют с различными биологическими структурами и могут изменять функции этих структур, увеличивая липофильность активной молекулы (аминокислот, нуклеиновых кислот, белков и др.). Приведены данные о биологическом действии фуллеренов в опытах in vitro и in vivo. Рассмотрены примеры адресной доставки известных терапевтических агентов.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Марина Анатольевна Думпис
ФГБНУ «Институт экспериментальной медицины»
Автор, ответственный за переписку.
Email: mardoom@mail.ru
канд. хим. наук, ведущий научный сотрудник, лаборатория синтеза и нанотехнологий лекарственных веществ отдела нейрофармакологии
Россия, Санкт-ПетербургДмитрий Николаевич Николаев
ФГБНУ «Институт экспериментальной медицины»
Email: pp225@yandex.ru
научный сотрудник, лаборатория синтеза и нанотехнологий лекарственных веществ отдела нейрофармакологии
Россия, Санкт-ПетербургЕлена Викторовна Литасова
ФГБНУ «Институт экспериментальной медицины»
Email: llitasova@mail.ru
канд. биол. наук, старший научный сотрудник, лаборатория синтеза и нанотехнологий лекарственных веществ отдела нейрофармакологии
Россия, Санкт-ПетербургВиктор Владимирович Ильин
ФГБНУ «Институт экспериментальной медицины»
Email: victor.iljin@mail.ru
канд. хим. наук, научный сотрудник, лаборатория синтеза и нанотехнологий лекарственных веществ отдела нейрофармакологии
Россия, Санкт-ПетербургМария Александровна Брусина
ФГБНУ «Институт экспериментальной медицины»
Email: mashasemen@mail.ru
младший научный сотрудник, лаборатория синтеза и нанотехнологий лекарственных веществ отдела нейрофармакологии
Россия, Санкт-ПетербургЛевон Борисович Пиотровский
ФГБНУ «Институт экспериментальной медицины»
Email: levon-piotrovsky@yandex.ru
д-р биол. наук, руководитель лаборатории синтеза и нанотехнологий лекарственных веществ отдела нейрофармакологии
Россия, Санкт-ПетербургСписок литературы
- Teradal NL, Jelinek R. Carbon Nanomaterials in Biological Studies and Biomedicine. Adv Healthc Mater. 2017;6(17): 1700574. doi: 10.1002/adhm.201700574.
- Пиотровский Л.Б. Очерки о наномедицине. – СПб.: Европейский дом, 2013. [Piotrovskiy LB. Essays on nanomedicine. Saint Petersburg: Evropeyskiy dom; 2013. (In Russ.)]
- Zhang GP, Sun X, George TF. Nonlinear optical response and ultrafast dynamics in C60. J Phys Chem A. 2009;113(7):1175-1188. doi: 10.1021/jp802244b.
- Albert K, Hsu HY. Carbon-Based Materials for Photo-Triggered Theranostic Applications. Molecules. 2016;21(11). doi: 10.3390/molecules21111585.
- Osawa E. Superaromaticity. Kаgaku. 1970;25:854-863.
- Бочвар Д.А., Гальперн Е.Г. О гипотетических системах: карбододекаэдре, s-икозаэдране и карбо-s-икозаэдране // Доклады Академии наук СССР. – 1973. – Т. 209. – № 3. – С. 610–612. [Bochvar DA, Gal’pern EG. On hypothetical systems: carbododecahedron, s-icosahedron and carbo-s-icosahedron. Dokl Akad Nauk SSSR. 1973;209(3):610-612. (In Russ.)]
- Елецкий А.В., Смирнов Б.М. Фуллерены и структуры углерода // Успехи физических наук. – 1995. – Т. 165. – № 9. – С. 977–1009. [Eletskiy AV, Smirnov BM. Fullerines and the structures of carbon. Uspekhi fizicheskikh nauk. 1995;165(9):977-1009. (In Russ.)]. doi: 10.3367/UFNr.0165.199509a.0977.
- Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии. – СПб.: Росток, 2006. [Piotrovskiy LB, Kiselev OI. Fullerenes in Biology. Saint Petersburg: Rostok; 2006. (In Russ.)]
- Jafvert CT, Kulkarni PP. Buckminsterfullerene’s (C60) Octanol-Water Partition Coefficient (Kow) and Aqueous Solubility. Environ Sci Technol. 2008;42(16):5945-5950. doi: 10.1021/es702809a.
- Piotrovsky LB, Kiselev OI. Fullerenes and Viruses. Fullerenes, Nanotubes and Carbon Nanostructures. 2005;12(1-2):397-403. doi: 10.1081/fst-120027198.
- Piotrovskiy LB, Litasova EV, Dumpis MA, et al. Enhan ced brain penetration of hexamethonium in complexes with derivatives of fullerene C60. Dokl Biochem Biophys. 2016;468(1):173-175. doi: 10.1134/S1607672916030030.
- Sijbesma R, Srdanov G, Wudl F, et al. Synthesis of a fullerene derivative for the inhibition of HIV enzymes. J Am Chem Soc. 1993;115(15):6510-6512. doi: 10.1021/ja00068a006.
- Penkova AV, Acquah SF, Piotrovskiy LB, et al. Fullerene derivatives as nano-additives in polymer composites. Russian Chemical Reviews. 2017;86(6):530-566. doi: 10.1070/rcr4712.
- Witte P, Beuerle F, Hartnagel U, et al. Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70. Org Biomol Chem. 2007;5(22):3599-3613. doi: 10.1039/b711912g.
- Brettreich M, Hirsch A. A highly water-soluble dendro[60]fullerene. Tetrahedron Lett. 1998;39(18):2731-2734. doi: 10.1016/s0040-4039(98)00491-2.
- Semenov KN, Charykov NA, Keskinov VN. Fullerenol Synthesis and Identification. Properties of the Fullerenol Water Solutions. J Chem Eng Data. 2011;56(2):230-239. doi: 10.1021/je100755v.
- Dawid A, Gorny K, Gburski Z. The influence of distribution of hydroxyl groups on vibrational spectra of fullerenol C60(OH)24 isomers: DFT study. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136:1993-1997. doi: 10.1016/j.saa.2014.08.023.
- Khakina EA, Yurkova AA, Peregudov AS, et al. Highly selective reactions of C60Cl6 with thiols for the synthesis of functionalized [60]fullerene derivatives. Chem Commun (Camb). 2012;48(57):7158-7160. doi: 10.1039/c2cc32517a.
- Ильин В.В., Пиотровский Л.Б Исследование стабильности пленок фуллерена С60 // Обз. клин. фармакол. лек. тер. – 2017. – Т. 15. – №. 2. – С. 42–45. [Ilyin VV, Piotrovskii LB. The study of the stability of fullerene C60 films. Reviews on Clinical Pharmacology and Drug Therapy.2017;15(2):42-45. (In Russ.)]. doi: 10.17816/RCF15242-45.
- Lee J, Yamakoshi Y, Hughes JB, Kim J-H. Mechanism of C60 Photoreactivity in Water: Fate of Triplet State and Radical Anion and Production of Reactive Oxygen Species. Environ Sci Technol. 2008;42(9):3459-3464. doi: 10.1021/es702905g.
- Calvaresi M, Zerbetto F. Baiting proteins with C60. ACS Nano. 2010;4(4):2283-2299. doi: 10.1021/nn901809b.
- Maeda-Mamiya R, Noiri E, Isobe H, et al. In vivo gene delivery by cationic tetraamino fullerene. Proc Natl Acad Sci U S A. 2010;107(12):5339-5344. doi: 10.1073/pnas.0909223107.
- Zhao B, He YY, Bilski PJ, Chignell CF. Pristine (C60) and hydroxylated [C60(OH)24] fullerene phototoxicity towards HaCaT keratinocytes: type I vs type II mechanisms. Chem Res Toxicol. 2008;21(5):1056-1063. doi: 10.1021/tx800056w.
- Kong L, Zepp RG. Production and consumption of reactive oxygen species by fullerenes. Environ Toxicol Chem. 2012;31(1):136-143. doi: 10.1002/etc.711.
- Castro E, Martinez ZS, Seong CS, et al. Characterization of New Cationic N,N-Dimethyl[70]fulleropyrrolidinium Iodide Derivatives as Potent HIV-1 Maturation Inhibitors. J Med Chem. 2016;59(24):10963-10973. doi: 10.1021/acs.jmedchem.6b00994.
- Misra C, Kumar M, Sharma G, et al. Glycinated fullerenes for tamoxifen intracellular delivery with improved anticancer activity and pharmacokinetics. Nanomedicine (Lond). 2017;12(9):1011-1023. doi: 10.2217/nnm-2016-0432.
- Ikeda A, Mae T, Ueda M, et al. Improved photodynamic activities of liposome-incorporated [60]fullerene derivatives bearing a polar group. Chem Commun (Camb). 2017;53(20):2966-2969. doi: 10.1039/c7cc00302a.
- Asada R, Liao F, Saitoh Y, Miwa N. Photodynamic anti-cancer effects of fullerene [C60]-PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Mol Cell Biochem. 2014;390(1-2):175-184. doi: 10.1007/s11010-014-1968-8.
- Yang XL, Fan CH, Zhu HS. Photo-induced cytotoxicity of malonic acid [C60]fullerene derivatives and its mechanism. Toxicol In Vitro. 2002;16(1):41-46. doi: 10.1016/s0887-2333(01)00102-3.
- Doi Y, Ikeda A, Akiyama M, et al. Intracellular uptake and photodynamic activity of water-soluble [60]- and [70]fullerenes incorporated in liposomes. Chemistry. 2008;14(29):8892-8897. doi: 10.1002/chem.200801090.
- Ikeda A, Matsumoto M, Akiyama M, et al. Direct and short-time uptake of [70]fullerene into the cell membrane using an exchange reaction from a [70]fullerene-gamma-cyclodextrin complex and the resulting photodynamic activity. Chem Commun (Camb). 2009;(12):1547-1549. doi: 10.1039/b820768b.
- Sperandio FF, Sharma SK, Wang M, et al. Photoinduced electron-transfer mechanisms for radical-enhanced photodynamic therapy mediated by water-soluble decacationic C70 and C84O2 Fullerene Derivatives. Nanomedicine. 2013;9(4):570-579. doi: 10.1016/j.nano.2012.09.005.
- Mizuno K, Zhiyentayev T, Huang L, et al. Antimicrobial Photodynamic Therapy with Functionalized Fullerenes: Quantitative Structure-activity Relationships. J Nanomed Nanotechnol. 2011;2(2):1-9. doi: 10.4172/2157-7439.1000109.
- Yin R, Wang M, Huang YY, et al. Photodynamic therapy with decacationic [60]fullerene monoadducts: effect of a light absorbing electron-donor antenna and micellar formulation. Nanomedicine. 2014;10(4):795-808. doi: 10.1016/j.nano.2013.11.014.
- Injac R, Prijatelj M, Strukelj B. Fullerenol nanoparticles: toxicity and antioxidant activity. Methods Mol Biol. 2013;1028:75-100. doi: 10.1007/978-1-62703-475-3_5.
- Elshater AA, Haridy MAM, Salman MMA, et al. Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomed Phar macother. 2018;97:53-59. doi: 10.1016/j.biopha.2017.10.134.
- Zhou Y, Li J, Ma H, et al. Biocompatible [60]/[70] Fullerenols: Potent Defense against Oxidative Injury Induced by Reduplicative Chemotherapy. ACS Appl Mater Interfaces. 2017;9(41):35539-35547. doi: 10.1021/acsami.7b08348.
- Baati T, Bourasset F, Gharbi N, et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials. 2012;33(19):4936-4946. doi: 10.1016/j.biomaterials.2012.03.036.
- Inui S, Aoshima H, Nishiyama A, Itami S. Improvement of acne vulgaris by topical fullerene application: unique impact on skin care. Nanomedicine. 2011;7(2):238-241. doi: 10.1016/j.nano.2010.09.005.
- Xiao L, Takada H, Maeda K, et al. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed Pharmacother. 2005;59(7):351-358. doi: 10.1016/j.biopha.2005.02.004.
- Kato S, Aoshima H, Saitoh Y, Miwa N. Biological safety of LipoFullerene composed of squalane and fullerene-C60 upon mutagenesis, photocytotoxicity, and permeability into the human skin tissue. Basic Clin Pharmacol Toxicol. 2009;104(6):483-487. doi: 10.1111/j.1742-7843.2009.00396.x.
- Mousavi SZ, Nafisi S, Maibach HI. Fullerene nanoparticle in dermatological and cosmetic applications. Nanomedicine. 2017;13(3):1071-1087. doi: 10.1016/j.nano.2016.10.002.
- Bianco A, Corvaja C, Crisma M, et al. A Helical Peptide Receptor for [60]Fullerene. Chem Eur J. 2002;8(7):1544-1553. doi: 10.1002/1521-3765(20020402)8:7<1544::aid-chem1544>3.0.co;2-t.
- Qian M, Shan Y, Guan S, et al. Structural Basis of Fullerene Derivatives as Novel Potent Inhibitors of Protein Tyrosine Phosphatase 1B: Insight into the Inhibitory Mechanism through Molecular Modeling Studies. J Chem Inf Model. 2016;56(10):2024-2034. doi: 10.1021/acs.jcim.6b00482.
- Kataoka H, Ohe T, Takahashi K, et al. Novel fullerene derivatives as dual inhibitors of Hepatitis C virus NS5B polymerase and NS3/4A protease. Bioorg Med Chem Lett. 2016;26(19):4565-4567. doi: 10.1016/j.bmcl.2016.08.086.
- Ratnikova TA, Govindan PN, Salonen E, Ke PC. In vitro polymerization of microtubules with a fullerene derivative. ACS Nano. 2011;5(8):6306-6314. doi: 10.1021/nn201331n.
- Giust D, Leon D, Ballesteros-Yanez I, et al. Modulation of adenosine receptors by [60]fullerene hydrosoluble derivative in SK-N-MC cells. ACS Chem Neurosci. 2011;2(7):363-369. doi: 10.1021/cn200016q.
- Miao Y, Xu J, Shen Y, et al. Nanoparticle as signaling protein mimic: robust structural and functional modulation of CaMKII upon specific binding to fullerene C60 nanocrystals. ACS Nano. 2014;8(6):6131-6144. doi: 10.1021/nn501495a.
- Kim JE, Lee M. Fullerene inhibits β-amyloid peptide aggregation. Biochem Biophys Res Commun. 2003;303(2):576-579. doi: 10.1016/s0006-291x(03)00393-0.
- Bobylev AG, Shpagina MD, Bobyleva LG, et al. Antiamyloid properties of fullerene C60 derivatives. Biophysics. 2012;57(3):300-304. doi: 10.1134/s0006350912030050.
- Makarova EG, Gordon RY, Podolski IY. Fullerene C60 Prevents Neurotoxicity Induced by Intrahippocampal Microinjection of Amyloid-β Peptide. J Nanosci Nanotechnol. 2012;12(1):119-126. doi: 10.1166/jnn.2012.5709.
- Gordon R, Podolski I, Makarova E, et al. Intrahippocampal Pathways Involved in Learning/Memory Mechanisms are Affected by Intracerebral Infusions of Amyloid-β25-35 Peptide and Hydrated Fullerene C60 in Rats. J Alzheimers Dis. 2017;58(3):711-724. doi: 10.3233/JAD-161182.
- Bednarikova Z, Huy PD, Mocanu MM, et al. Fullerenol C60(OH)16 prevents amyloid fibrillization of Aβ40-in vitro and in silico approach. Phys Chem Chem Phys. 2016;18(28):18855-18867. doi: 10.1039/c6cp00901h.
- Xu X, Wang X, Li Y, et al. A large-scale association study for nanoparticle C60 uncovers mechanisms of nanotoxicity disrupting the native conformations of DNA/RNA. Nucleic Acids Res. 2012;40(16):7622-7632. doi: 10.1093/nar/gks517.
- Nedumpully Govindan P, Monticelli L, Salonen E. Mechanism of taq DNA polymerase inhibition by fullerene derivatives: insight from computer simulations. J Phys Chem B. 2012;116(35):10676-10683. doi: 10.1021/jp3046577.
- Pinteala M, Dascalu A, Ungurenasu C. Binding fullerenol C60(OH)24 to dsDNA. Int J Nanomedicine. 2009;4:193-199.
- An H, Jin B. DNA exposure to buckminsterfullerene (C60): toward DNA stability, reactivity, and replication. Environ Sci Technol. 2011;45(15):6608-6616. doi: 10.1021/es2012319.
- Bortolus M, Parisio G, Maniero AL, Ferrarini A. Monomeric fullerenes in lipid membranes: effects of molecular shape and polarity. Langmuir. 2011;27(20):12560-12568. doi: 10.1021/la202524r.
- Dugan LL, Turetsky DM, Du C, et al. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci U S A. 1997;94(17):9434-9439. doi: 10.1073/pnas.94.17.9434.
- Bosi S, Da Ros T, Spalluto G, Prato M. Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem. 2003;38(11-12):913-923. doi: 10.1016/j.ejmech.2003.09.005.
- Boutorine AS, Takasugi M, Hele`ne C, et al. Fullerene – Oligonucleotide Conjugates: Photoinduced Sequence-Specific DNA Cleavage. Angew Chem Int Ed Engl. 1995;33(2324):2462-2465. doi: 10.1002/anie.199424621.
- Da Ros T, Vazquez E, Spalluto G, et al. Design, synthesis and biological properties of fulleropyrrolidine derivatives as potential DNA photo-probes. J Supramol Chem. 2002;2(1-3):327-334. doi: 10.1016/s1472-7862(03)00089-3.
- Partha R, Mitchell LR, Lyon JL, et al. Buckysomes: Fullerene-Based Nanocarriers for Hydrophobic Molecule Delivery. ACS Nano. 2008;2(9):1950-1958. doi: 10.1021/nn800422k.
- Shi J, Zhang H, Wang L, et al. PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials. 2013;34(1):251-261. doi: 10.1016/j.biomaterials.2012.09.039.
- Liu Q, Xu L, Zhang X, et al. Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells. Chem Asian J. 2013;8(10):2370-2376. doi: 10.1002/asia.201300039.
- Rancan F, Helmreich M, Molich A, et al. Synthesis and in vitro testing of a pyropheophorbide-a-fullerene hexakis adduct immunoconjugate for photodynamic therapy. Bioconjug Chem. 2007;18(4):1078-1086. doi: 10.1021/bc0603337.
- Nishihara M, Perret F, Takeuchi T, et al. Arginine magic with new counterions up the sleeve. Org Biomol Chem. 2005;3(9):1659-1669. doi: 10.1039/b501472g.
- Sitharaman B, Zakharian TY, Saraf A, et al. Water-soluble fullerene (C60) derivatives as nonviral gene-delivery vectors. Mol Pharm. 2008;5(4):567-578. doi: 10.1021/mp700106w.
- Liu Z, Liang XJ. Nano-carbons as theranostics. Theranostics. 2012;2(3):235-237. doi: 10.7150/thno.4156.
- Ceron MR, Maffeis V, Stevenson S, Echegoyen L. Endohedral fullerenes: Synthesis, isolation, mono- and bis- functionalization. Inorg Chim Acta. 2017;468:16-27. doi: 10.1016/j.ica.2017.03.040.
- Liu JH, Cao L, Luo PG, et al. Fullerene-conjugated doxorubicin in cells. ACS Appl Mater Interfaces. 2010;2(5):1384-1389. doi: 10.1021/am100037y.
- Krishna V, Singh A, Sharma P, et al. Polyhydroxy Fullerenes for Non-Invasive Cancer Imaging and Therapy. Small. 2010;6(20):2236-2241. doi: 10.1002/smll.201000847.
- Shinohara H. Another big discovery-metallofullerenes. Philos Trans A Math Phys Eng Sci. 2016;374(2076). doi: 10.1098/rsta.2015.0325.
- Chai Y, Guo T, Jin C, et al. Fullerenes with metals inside. J Phys Chem. 1991;95(20):7564-7568. doi: 10.1021/j100173a002.
- Meng J, Liang X, Chen X, Zhao Y. Biological characterizations of [Gd@C82(OH)22]n nanoparticles as fullerene derivatives for cancer therapy. Integr Biol (Camb). 2013;5(1):43-47. doi: 10.1039/c2ib20145c.
- Diener MD, Alford JM, Kennel SJ, Mirzadeh S. 212Pb@C60 and Its Water-Soluble Derivatives: Synthesis, Stability, and Suitability for Radioimmunotherapy. J Am Chem Soc. 2007;129(16):5131-5138. doi: 10.1021/ja068639b.
- Zhen M, Zheng J, Ye L, et al. Maximizing the relaxivity of Gd-complex by synergistic effect of HSA and carboxylfullerene. ACS Appl Mater Interfaces. 2012;4(7):3724-3729. doi: 10.1021/am300817z.
- Shultz MD, Duchamp JC, Wilson JD, et al. Encapsulation of a radiolabeled cluster inside a fullerene cage, 177LuxLu(3 – x)N@C80: an interleukin-13-conjugated radiolabeled metallofullerene platform. J Am Chem Soc. 2010;132(14):4980-4981. doi: 10.1021/ja9093617.
- Bolskar RD. Gadofullerene MRI contrast agents. Nanomedicine (Lond). 2008;3(2):201-213. doi: 10.2217/17435889.3.2.201.
- Aschberger K, Johnston HJ, Stone V, et al. Review of fullerene toxicity and exposure – appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol. 2010;58(3):455-473. doi: 10.1016/j.yrtph.2010.08.017.
- Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives. 2005;113(7):823-839. doi: 10.1289/ehp.7339.
- Gharbi N, Pressac M, Hadchouel M, et al. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005;5(12):2578-2585. doi: 10.1021/nl051866b.
- Popov VA, Tyunin MA, Zaitseva OB, et al. C60/PVP complex – No Toxicity after Introperitoneal Injection to Rats. Fullerenes, Nanotubes and Carbon Nanostructures. 2008;16(5-6):693-697. doi: 10.1080/15363830802317130.
- Dumpis MA, Iljin VV, Litasova EV, et al. The acute and sub-acute toxicity of C60/PVP complex in vivo. Adv Nano Res. 2016;4(3):167-179. doi: 10.12989/anr.2016.4.3.167.
- Yamago S, Tokuyama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol. 1995;2(6):385-389. doi: 10.1016/1074-5521(95)90219-8.
- Snyder RW, Fennell TR, Wingard CJ, et al. Distribution and biomarker of carbon-14 labeled fullerene C60 ([14C(U)]C60) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol. 2015;35(12):1438-1451. doi: 10.1002/jat.3177.
- Wang C, Bai Y, Li H, et al. Surface modification-mediated biodistribution of 13C-fullerene C60 in vivo. Part Fibre Toxicol. 2016;13:14. doi: 10.1186/s12989-016-0126-8.
- Shipelin VA, Smirnova TA, Gmoshinskii IV, Tutelyan VA. Analysis of toxicity biomarkers of fullerene C60 nanoparticles by confocal fluorescent microscopy. Bull Exp Biol Med. 2015;158(4):443-449. doi: 10.1007/s10517-015-2781-4.
- Zhao Y, Fang Y, Jiang Y. Fluorescence study of fullerene in organic solvents at room temperature. Spectrochim Acta A Mol Biomol Spectrosc. 2006;64(3):564-567. doi: 10.1016/j.saa.2005.07.054.
- Wu F, Bai Y, Mu Y, et al. Fluorescence quenching of fulvic acids by fullerene in water. Environ Pollut. 2013;172:100-107. doi: 10.1016/j.envpol.2012.08.005.
- Pal D, Bhattacharya S. Absorption spectrophotometric, fluorescence and theoretical investigations on supramolecular interaction of a designed bisporphyrin with C60 and C70. Spectrochim Acta A Mol Biomol Spectrosc. 2011;79(3):638-645. doi: 10.1016/j.saa.2011.03.050.
- Yu W-D, Nie Y-M, Yuan H, et al. Synthesis and characterization of a highly stable zinc phenylporphyrin Isoxazoline-[60] fullerene dyad: Impact of coordination on the redox and fluorescence properties. Inorg Chem Commun. 2017;84:134-137. doi: 10.1016/j.inoche.2017.08.014.
- Ray A, Santhosh K, Bhattacharya S. Absorption spectrophotometric, fluorescence, transient absorption and quantum chemical investigations on fullerene/phthalocyanine supramolecular complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2011;78(5):1364-1375. doi: 10.1016/j.saa.2011.01.011.
- Xu K, Liu F, Ma J, Tang B. A new specific fullerene-based fluorescent probe for trypsin. Analyst. 2011;136(6):1199-1203. doi: 10.1039/c0an00576b.
- Schuetze C, Ritter U, Scharff P, et al. Interaction of N-fluorescein-5-isothiocyanate pyrrolidine-C60 with a bimolecular lipid model membrane. Mater Sci Eng C. 2011;31(5):1148-1150. doi: 10.1016/j.msec.2011.02.026.
- Navarro DA, Kookana RS, McLaughlin MJ, Kirby JK. Fate of radiolabeled C60 fullerenes in aged soils. Environ Pollut. 2017;221:293-300. doi: 10.1016/j.envpol.2016.11.077.
- Vlasova, II, Kapralov AA, Michael ZP, et al. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications. Toxicol Appl Pharmacol. 2016;299:58-69. doi: 10.1016/j.taap.2016.01.002.
- Litasova EV, Iljin VV, Sokolov AV, et al. The biodegradation of fullerene C60 by myeloperoxidase. Dokl Biochem Biophys. 2016;471(1):417-420. doi: 10.1134/S1607672916060119.
- Lapin NA, Vergara LA, Mackeyev Y, et al. Biotransport kinetics and intratumoral biodistribution of malonodiserinolamide-derivatized [60]fullerene in a murine model of breast adenocarcinoma. Int J Nanomedicine. 2017;12:8289-8307. doi: 10.2147/IJN.S138641.
