Central mechanisms of action of kisspeptin-10 in stress-induced reproductive dysfunction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background: Emotional stress impairs both mental and reproductive health, being accompanied by hormonal dysregulation that is difficult to correct. Kisspeptin is a neuropeptide that regulates the reproductive system through its effects on hypothalamic–pituitary mechanisms. Although the incidence of stress-induced reproductive disorders is increasing, effective approaches targeting the central components of neuroendocrine regulation remain limited. The role of kisspeptin in restoring the hypothalamic–pituitary–gonadal axis under chronic stress has not been sufficiently studied, creating a significant gap in the understanding of pathogenesis and the potential for its pharmacological correction.

Aim: The work aimed to investigate the effect of kisspeptin-10 on the activity of the kisspeptin–gonadotropin-releasing hormone system in male rats (Rattus norvegicus) in a model of posttraumatic stress disorder.

Methods: The study included 42 Wistar rats, which were divided into 7 groups and exposed to restraint stress or vital stress. Kisspeptin-10 was administered intranasally or intraperitoneally. The levels of selected neuropeptides and their receptors in the hypothalamus and amygdala were assessed using enzyme-linked immunosorbent assay.

Results: Kisspeptin-10 increased the levels of gonadotropin-releasing hormone, kisspeptin, and the kisspeptin receptor in the brain. An activating effect on androgen receptor expression was observed, predominantly in the hypothalamus.

Conclusions: The findings indicate a central mechanism of action of kisspeptin-10 that is independent of sex steroids and demonstrate its potential in the treatment of stress-induced reproductive dysfunction.

About the authors

Anastasiya P. Perova

Institute of Experimental Medicine; Saint Petersburg State University

Author for correspondence.
Email: eulenfeather@gmail.com
ORCID iD: 0009-0003-2548-8647
SPIN-code: 1058-0174
Russian Federation, Saint Petersburg; Saint Petersburg

Vladanka A. Goltz

Institute of Experimental Medicine; Saint Petersburg State Pediatric Medical University

Email: digitalisobscura@mail.ru
ORCID iD: 0009-0001-2716-318X
SPIN-code: 2031-2550
Russian Federation, Saint Petersburg; Saint Petersburg

Andrei A. Lebedev

Institute of Experimental Medicine

Email: aalebedev-iem@rambler.ru
ORCID iD: 0000-0003-0297-0425
SPIN-code: 4998-5204

Dr. Sci. (Biology), Professor

Russian Federation, Saint Petersburg

Eugenii R. Bychkov

Institute of Experimental Medicine; Kirov Military Medical Academy

Email: bychkov@mail.ru
ORCID iD: 0000-0002-8911-6805
SPIN-code: 9408-0799

MD, Dr. Sci. (Medicine)

Russian Federation, Kirov Military Medical Academy; Kirov Military Medical Academy

Gleb V. Beznin

Institute of Experimental Medicine

Email: beznin.gv@iemspb.ru
ORCID iD: 0000-0001-5730-4265
SPIN-code: 7796-1107

MS, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Sergey G. Tsikunov

Institute of Experimental Medicine

Email: secikunov@yandex.ru
ORCID iD: 0000-0002-7097-1940
SPIN-code: 7771-1940

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Alekber A. Bairamov

Institute of Experimental Medicine; Almazov National Medical Research Centre

Email: alekber@mail.ru
ORCID iD: 0000-0002-0673-8722
SPIN-code: 9802-9988

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Henry JP. Biological basis of the stress response. Integr Physiol Behav Sci. 1992;27:66–83. doi: 10.1007/BF02691093
  2. Tng EL. Kisspeptin signalling and its roles in humans. Singapore Med J. 2015;56(12):649–656. doi: 10.11622/smedj.2015183
  3. Mills EG, Yang L, Abbara A, et al. Current perspectives on kisspeptin’s role in behaviour. Front Endocrinol (Lausanne). 2022;13:928143. doi: 10.3389/fendo.2022.928143
  4. Keeney DS, Jenkins CM, Waterman MR. Developmentally regulated expression of adrenal 17 alpha-hydroxylase cytochrome P450 in the mouse embryo. Endocrinology. 1995;136(11):4872–4879. doi: 10.1210/endo.136.11.7588219
  5. Huang Y, Liu Q, Huang G, et al. Hypothalamic kisspeptin neurons regulate energy metabolism and reproduction under chronic stress. Front Endocrinol (Lausanne). 2022;13:844397. doi: 10.3389/fendo.2022.844397
  6. Kant PA, Saxena RN. Effect of beta-endorphin and naloxone on rat testicular steroidogenesis. Indian J Exp Biol. 1995;33(3):165–168. PMID: 7601485
  7. Zerani M, Gobbetti A. Effects of β-endorphin and naloxone on corticosterone and cortisol release in the newt (Triturus carnifex): studies in vivo and in vitro. J Endocrinol. 1991;131(2):295–302. doi: 10.1677/joe.0.1310295
  8. Kurko OD, Inozemtseva LS, Glazova NYu, et al. Effects of chronic unpredictable stress and acute low-dose endotoxemia in Wistar Han and Sprague Dawley rats. I.P. Pavlov Journal of Higher Nervous Activity. 2020;70(1):86–103. doi: 10.31857/S0044467720010086 EDN: JSHCRB
  9. Ogawa S, Nathan FM, Parhar IS. Habenular kisspeptin modulates fear in the zebrafish. PNAS USA. 2014;111(10):3841–3846. doi: 10.1073/pnas.1314184111
  10. Nathan FM, Ogawa S, Parhar IS. Kisspeptin1 modulates odorant-evoked fear response via two serotonin receptor subtypes (5-HT1 and 5-HT2) in zebrafish. J Neurochem. 2015;133(6):870–878. doi: 10.1111/jnc.13105
  11. Ogawa S, Ng KW, Ramadasan PN, et al. Habenular Kiss1 neurons modulate the serotonergic system in the brain of zebrafish. Endocrinology. 2012;153(5):2398–2407. doi: 10.1210/en.2012-1062
  12. Csabafi K, Jászberényi M, Bagosi Z, et al. Effects of kisspeptin-13 on the hypothalamic–pituitary–adrenal axis, thermoregulation, anxiety and locomotor activity in rats. Behav Brain Res. 2013;241:56–61. doi: 10.1016/j.bbr.2012.11.039
  13. Ibos KE, Bodnár É, Bagosi Z, et al. Kisspeptin-8 induces anxiety-like behavior and hypolocomotion by activating the HPA axis and increasing GABA release in the nucleus accumbens in rats. Biomedicines. 2021;9(2):112. doi: 10.3390/biomedicines9020112
  14. Snoeren EMS. Female reproductive behavior. In: Choleris E, Pfaff DW, Kavaliers M, editors. Neurobiology of Social Behavior. Academic Press; 2016. P. 1–44. doi: 10.1016/B978-0-12-803592-4.00001-1
  15. Viau V, Meaney MJ. The inhibitory effect of testosterone on hypothalamic-pituitary-adrenal responses to stress is mediated by the medial preoptic area. J Neurosci. 1996;16(5):1866–1876. doi: 10.1523/JNEUROSCI.16-05-01866.1996
  16. Lee DK, Nguyen T, O’Neill GP, et al. Discovery of a receptor related to the galanin receptors. FEBS Lett. 1999;446(1):103–107. doi: 10.1016/S0014-5793(99)00009-5
  17. Ohtaki T, Shintani Y, Honda S, et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001;411(6837):613–617. doi: 10.1038/35079135
  18. Yarmolinskaya MI, Ganbarli NF, Tkachenko NN, et al. Kisspeptin and polycystic ovary syndrome — is there any connection? Journal of obstetrics and women’s diseases. 2017;66(2):73–80. doi: 10.17816/JOWD6673-80 EDN: YKWECY
  19. Bogolyubova ON, Shestakova AN. Post-traumatic stress and decision-making: Research perspectives in the neuroeconomic paradigm. Experimental Psychology. 2015;8(2):60–76. doi: 10.17759/exppsy.2015080206 EDN: UIFRBX
  20. Magarramova LA, Tissen IYu, Blazhenko AA, et al. Kisspeptin is a testosterone-independent regulator of sexual motivation in male rats. J Exp Biol Agric Sci. 2022;10(1):131–134. doi: 10.18006/2022.10(1).131.134
  21. Tissen IY, Lebedev AA, Tsikunov SG, Shabanov PD. Kisspeptin reduces sexual dysfunction in a rat model of posttraumatic stress disorder. Psychopharmacology and Addiction Biology. 2023;14(4):237–44. doi: 10.17816/phbn623033 EDN: WVXICW
  22. Perova AP, Golts VA, Lebedev AA, et al. Kisspeptin-10 reduces the manifestation of sexual dysfunction in rats in models of acute psychogenic stress. Pathogenesis. 2024;2(2):76–80. doi: 10.25557/2310-0435.2024.02.76-80 EDN: DJYFFD
  23. Golts VA, Perova AP, Lebedev AA, et al. The role of kisspeptin-10 in the regulation of the hypothalamic-pituitary-gonadal axis in post-traumatic stress disorder. Pediatrician (St. Petersburg). 2025;16(3):5–14. doi: 10.56871/PED.2025.48.38.001 EDN: RXZRQR
  24. Goltz VА, Lebedev АА, Bychkov ER, et al. Effect of kisspeptin-10 on sexual activity in male rats after exposure to restraint stress. Medical Academic Journal. 2025;25(2):85–93. doi: 10.17816/MAJ630598 EDN: LMNWAU
  25. Talegaonkar S, Mishra PR. Intranasal delivery: An approach to bypass the blood-brain barrier. Indian J Pharmacol. 2004;36(3):140–147.
  26. Dudek KA, Dion-Albert L, Lebel M, et al. Molecular adaptations of the blood–brain barrier promote stress resilience vs. depression. PNAS USA. 2020;117(6):3326–3336. doi: 10.1073/pnas.1914655117
  27. Filová B, Ostatníková D, Celec P, Hodosy J. The effect of testosterone on the formation of brain structures. Cells Tissues Organs. 2013;197(3):169–177. doi: 10.1159/000345567
  28. Chan HJ, Petrossian K, Chen S. Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and -resistant breast cancer cells. J Steroid Biochem Mol Biol. 2016;161:73–83. doi: 10.1016/j.jsbmb.2015.07.018

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).