Computational and experimental evidence of blood–brain barrier permeability assessed in silico, in vitro, and in vivo

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background: To assess the efficacy of drugs used in the treatment of diseases, it is important to understand the physicochemical properties of a compound, particularly its ability to cross cellular membranes. There are many methods for determining the capacity of substances to penetrate the blood–brain barrier (BBB). The distribution of a compound between the membrane and the extracellular fluid can be expressed by a quantitative characteristic of partitioning (lipophilicity), referred to as logP, which is calculated as the ratio of the compound’s distribution between an organic phase and water.

Aim: The work aimed to determine and compare parameters that may serve as predictors of BBB penetration in silico and in vitro and to verify the obtained data in in vivo experiments.

Methods: Predictors of BBB penetration were assessed using in silico approaches (the Way2Drug portal and the VEGA ZZ software), in vitro methods based on ultraviolet spectrophotometry to determine experimental logP, and pharmacological analysis of drug effects following intraperitoneal injection using behavioral tests: open field, pole test, elevated plus maze, sexual motivation, and rotarod.

Results: Predictor values for BBB penetration were determined for 6-hydroxydopamine (6-OHDA), oxytocin, kisspeptin-10, and haloperidol (including DEEP, MEP, MLP, PSA, HBASS, HBDON, logS, logBB, logP, and others). Partition coefficients were calculated based on optical density measurements (6-OHDA, –1.01; kisspeptin-10, –0.79; oxytocin, –0.816; haloperidol, –0.2). A pharmacological evaluation of BBB penetration based on behavioral effects was performed, and theoretical (in silico) and experimental (ultraviolet spectrophotometry) partition coefficients (logPexp) were compared with in vivo pharmacological findings. The combined analyses demonstrated that only haloperidol possesses physicochemical properties favorable for BBB penetration.

Conclusions: The study has found that physicochemical properties obtained in silico and in vitro for predicting BBB penetration of drugs are confirmed by pharmacological analysis based on behavioral effects.

About the authors

Mariya V. Litvinova

Institute of Experimental Medicine

Author for correspondence.
Email: litvinova-masha@bk.ru
ORCID iD: 0000-0002-2924-7475
SPIN-code: 9548-4683
Russian Federation, Saint Petersburg

Makar A. Andreev

Saint Petersburg National Research University of Information Technologies, Mechanics and Optics

Email: makariy.andreev@gmail.com
ORCID iD: 0009-0004-4908-2614
SPIN-code: 3152-7118
Russian Federation, Saint Petersburg

Viсtor V. Iljin

Institute of Experimental Medicine

Email: victor.iljin@mail.ru
ORCID iD: 0000-0002-1012-7561
SPIN-code: 5559-8089

Cand. Sci. (Chemistry)

Russian Federation, Saint Petersburg

Andrei A. Lebedev

Institute of Experimental Medicine

Email: aalebedev-iem@rambler.ru
ORCID iD: 0000-0003-0297-0425
SPIN-code: 4998-5204

Dr. Sci. (Biology), Professor

Russian Federation, Saint Petersburg

Eugenii R. Bychkov

Institute of Experimental Medicine; Kirov Military Medical Academy

Email: bychkov@mail.ru
ORCID iD: 0000-0002-8911-6805
SPIN-code: 9408-0799

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Singh R, Singh G, George N, et al. Cu(i)-catalysed 1,2,3-triazole stitched chalcomer assembly as Pb(ii) and Cu(ii) ion sensor: DFT and docking scrutiny. RSC Adv. 2023;13(46):32399–32412. doi: 10.1039/d3ra05760g
  2. Druzhilovskiy DS, Rudik AV, Filimonov DA, et al. Computational platform Way2Drug: from the prediction of biological activity to drug repurposing. Russian Chemical Bulletin. 2017;66(10):1832–1841. doi: 10.1007.s11172-017-1954-x EDN: XXHXIL
  3. Pedretti A, Villa L, Vistoli G. VEGA- an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des. 2004;18(3):167–173. doi: 10.1023/b: jcam.0000035186.90683.f2 EDN: IHHZWY
  4. Fourches D, Ash J. 4D-quantitative structure-activity relationship modeling: making a comeback. Expert Opin Drug Discov. 2019;14(12): 1227–1235. doi: 10.1080/17460441.2019.1664467
  5. Piir G, Kahn I, García-Sosa AT, et al. Best practices for QSAR model reporting: Physical and chemical properties, ecotoxicity, environmental fate, human health, and toxicokinetics endpoints. Environ Health Perspect. 2018;126(12):126001. doi: 10.1289/EHP3264
  6. Xie D, Tian Y, Cao L, et al. 3D-QSAR, design, molecular docking and dynamics simulation studies of novel 6-hydroxybenzothiazole-2-carboxamides as potentially potent and selective monoamine oxidase B inhibitors. Front Pharmacol. 2025;16:1545791. doi: 10.3389/fphar.2025.1545791
  7. Adachi K, Sasaki T, Arai A, et al. Impact of variability of in silico and in vitro octanol/water partition coefficients of compounds on the input parameters and results of simplified human physiologically based pharmacokinetic models after virtual oral administrations. J Toxicol Sci. 2024;49(10):459–466. doi: 10.2131/jts.49.459
  8. Gaillard P, Carrupt P-A, Testa B, Boudon A. Molecular lipophilicity potential, a tool in 3D QSAR: method and applications. J Comput Aided Mol Des. 1994;8(2):83–96. doi: 10.1007/BF00119860
  9. Bytheway I, Darley MG, Popelier PL. The calculation of polar surface area from first principles: an application of quantum chemical topology to drug design. ChemMedChem. 2008;3(3):445–453. doi: 10.1002/cmdc.200700262
  10. Carpenter TS, Kirshner DA, Lau EY, et al. A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophys J. 2014;107(3):630–641. doi: 10.1016/j.bpj.2014.06.024 EDN: USERHD
  11. Kunwittaya S, Nantasenamat C, Treeratanapiboon L, et al. Influence of LogBB cut-off on the prediction of blood-brain barrier permeability. Biomed Appl Technol J. 2013;1:16–34.
  12. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26. doi: 10.1016/s0169-409x(00)00129-0
  13. Litvinova MV, Lebedev AA, Bychkov ER, Shabanov PD. Evaluation of the transportation of kisspeptins through a blood-brain barrier after intranasal administration. Reviews on Clinical Pharmacology and Drug Therapy. 2025;23(2):191–201. doi: 10.17816/RCF676528 EDN: JBKGXL
  14. Tissen IY, Lebedev AA, Tsikunov SG, Shabanov PD. Kisspeptin reduces sexual dysfunction in a rat model of posttraumatic stress disorder. Psychopharmacology and Addiction Biology. 2023;14(4):237–244. doi: 10.17816/phbn623033
  15. Pyurveev SS, Lebedev AA, Bychkov ER, et al. Analysis of melanocyte-stimulating hormone role in regulation of emotional and exploratory behavior in rats. Reviews on Clinical Pharmacology and Drug Therapy. 2025;23(1):91–100. doi: 10.17816/RCF651368 EDN: MZAZWJ

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).