Potential application of continuous pulse oximetry in cardiac rehabilitation programs: scientific review

Cover Page

Cite item

Full Text

Abstract

Real-time monitoring of patients' vital signs and feedback in virtual rehabilitation can be achieved through the use of remote technologies. Wearable sensors during training allow monitoring of heart rate, electrocardiography, and blood pressure. Oxygen saturation indicators are measured less frequently, although they may have greater diagnostic value. The search was conducted in PubMed, Scopus, Web of Science, PEDro, and Google Scholar databases. As of January, 62 sources, including Cochrane and systematic reviews, had been selected.

Blood oxygen saturation can only be measured using a pulse oximeter, which operates on the Bouguer-Lambert-Beer law and emits two wavelengths; the measurement can be carried out by transmission and reflective methods. In medically certified devices, the data are transmitted to the technological system and evaluated by trained medical personnel. Bracelets and rings have shown the greatest convenience and reliability for fixing pulse oximeter. Continuous monitoring of oxygen saturation during stress tests and physical training ensures their safety and allows the load adjustment. When connected to a telemedicine platform, the system should ensure direct interaction between the doctor and the patient with monitoring of vital parameters.

When conducting cardiac rehabilitation, a reliable certified medical device able to provide a continuous monitoring is required. Monitoring of vital parameters is carried out using a device with the necessary sensors, a patient feedback system and a telemedicine platform accessible to medical personnel for storing and analyzing the obtained data.

About the authors

I. E. Mishina

Ivanovo State Medical University; Saint Petersburg State University

Email: xenny7@yandex.ru
ORCID iD: 0000-0002-7659-8008

DSc (Medicine), Professor, Professor of the Department of Hospital Therapy, Cardiology and General Medical Practice, Professor of the Department of Postgraduate Medical Education, First Deputy Director of the Medical Institute

Russian Federation, Ivanovo; Saint Petersburg

K. A. Blinova

Ivanovo State Medical University

Author for correspondence.
Email: xenny7@yandex.ru
ORCID iD: 0000-0002-2896-8764

PhD (Medicine), Associate Professor of the Department of Oncology and Radiation Therapy

Russian Federation, Ivanovo

A. S. Parfenov

Ivanovo State Medical University

Email: xenny7@yandex.ru
ORCID iD: 0000-0002-5729-4121

PhD (Technical Sciences), Associate Professor of the Department of Physics, Chemistry and Mathematics

Russian Federation, Ivanovo

E. V. Berezina

Ivanovo State Medical University

Email: xenny7@yandex.ru
ORCID iD: 0000-0002-6958-0619

Doctor of Technical Sciences, Associate Professor, Head of the Department of Physics, Chemistry and Mathematics

Russian Federation, Ivanovo

O. V. Khoroshilova

Cardiology Center

Email: xenny7@yandex.ru
ORCID iD: 0000-0003-0487-7697

Cardiologist

Russian Federation, Ivanovo

M. V. Zhaburina

Ivanovo State Medical University

Email: xenny7@yandex.ru
ORCID iD: 0000-0003-4028-0708

PhD (Medicine), Associate Professor of the Department of Otorhinolaryngology and Ophthalmology

Russian Federation, Ivanovo

References

  1. Chong B., Jayabaskaran J., Jauhari S.M., Chan S.P., Goh R., Kueh M.T.W., Li H., Chin Y.H., Kong G., Anand V.V., Wang J.W., Muthiah M., Jain V., Mehta A., Lim S.L., Foo R., Figtree G.A., Nicholls S.J., Mamas M.A., Januzzi J.L., Chew N.W.S., Richards A.M., Chan M.Y. Global burden of cardiovascular diseases: projections from 2025 to 2050. Eur J Prev Cardiol. 2024: zwae281. doi: 10.1093/eurjpc/zwae281
  2. Dibben G.O., Faulkner J., Oldridge N., Rees K., Thompson D.R., Zwisler A.D., Taylor R.S. Exercise-based cardiac rehabilitation for coronary heart disease: a meta-analysis. Eur Heart J. 2023; 44 (6): 452–469. doi: 10.1093/eurheartj/ehac747
  3. Posadzki P., Pieper D., Bajpai R., Makaruk H., Könsgen N., Neuhaus A.L., Semwal M. Exercise/physical activity and health outcomes: an overview of Cochrane systematic reviews. BMC Public Health. 2020; 20 (1): 1724. doi: 10.1186/s12889-020-09855-3
  4. Дайхес А.Н., Шулаев А.В., Шикалева А.А., Выговская Л.Е., Садыков М.М. Эффективность медицинской реабилитации с использованием телемедицинских технологий (обзор литературы). Общественное здоровье и здравоохранение 2023; 1 (76): 13–26. / Daiches A.N., Shulaev A.V., Shikaleva A.A., Vygovskaya L.E., Sadykov M.M. Efficiency of medical rehabilitation using telemedicine technologies (literature review). Public Health and Healthcare 2023; 1 (76): 13–26 (in Russian).
  5. Dafny H.A., Champion S., Gebremichael L.G., Pearson V., Hendriks J.M., Clark R.A., Pinero de Plaza M.A., Gulyani A., Hines S., Beleigoli A. Cardiac rehabilitation, physical activity, and the effectiveness of activity monitoring devices on cardiovascular patients: an umbrella review of systematic reviews. Eur Heart J Qual Care Clin Outcomes 2023; 9 (4): 323–330. doi: 10.1093/ehjqcco/qcad005
  6. Каменская О.В., Логинова И.Ю., Клинкова А.С., Таркова А.Р., Найденов Р.А., Кретов Е.И., Ломиворотов В.В. Телемедицинские системы в кардиореабилитации: обзор современных возможностей и перспективы применения в клинической практике. Российский кардиологический журнал 2020; 25 (6): 3365. doi: 10.15829/1560-4071-2020-3365 / Kamenskaya O.V., Loginova I.Yu., Klinkova A.S., Tarkova A.R., Naidenov R.A., Kretov E.I., Lomivorotov V.V. Telemedicine systems in cardiac rehabilitation: a review of modern capabilities and prospects for application in clinical practice. Russian Journal of Cardiology 2020; 25 (6): 3365. doi: 10.15829/1560-4071-2020-3365 (in Russian).
  7. McDonagh S.T., Dalal H., Moore S., Clark C.E., Dean S.G., Jolly K., Cowie A., Afzal J., Taylor R.S. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst Rev. 2023; 10 (10): CD007130. doi: 10.1002/14651858.CD007130.pub5
  8. Golbus J.R., Lopez-Jimenez F., Barac A., Cornwell W.K. 3rd, Dunn P., Forman D.E., Martin S.S., Schorr E.N., Supervia M. Digital technologies in cardiac rehabilitation: a science advisory from the American heart association. Circulation 2023; 148 (1): 95–107. doi: 10.1161/CIR.0000000000001150
  9. Dwiputra B., Santoso A., Purwowiyoto B.S., Radi B., Ambari A.M., Desandri D.R., Fatrin S., Pandhita B.A.W. Smartphone-based cardiac rehabilitation program improves functional capacity in coronary heart disease patients: A Systematic Review and Meta-Analysis. Glob Heart. 2023; 18 (1): 42. doi: 10.5334/gh.1253
  10. Heimer M., Schmitz S., Teschler M., Schäfer H., Douma E.R., Habibovic M., Kop W.J., Meyer T., Mooren F.C., Schmitz B. eHealth for maintenance cardiovascular rehabilitation: a systematic review and meta-analysis. Eur J Prev Cardiol. 2023; 30 (15): 1634–1651. doi: 10.1093/eurjpc/zwad145
  11. Antoniou V., Kapreli E., Davos C.H., Batalik L., Pepera G. Safety and long-term outcomes of remote cardiac rehabilitation in coronary heart disease patients: A systematic review. Digit Health. 2024; 10: 20552076241237661. doi: 10.1177/20552076241237661
  12. Chong M.S., Sit J.W.H., Karthikesu K., Chair S.Y. Effectiveness of technology-assisted cardiac rehabilitation: A systematic review and meta-analysis. Int J Nurs Stud. 2021; 124: 104087. doi: 10.1016/j.ijnurstu.2021.104087
  13. Jones A.K., Yan C.L., Rivera Rodriquez B.P., Kaur S., Andrade-Bucknor S. Role of wearable devices in cardiac telerehabilitation: A scoping review. PLoS One 2023; 18 (5): e0285801. doi: 10.1371/journal.pone.0285801
  14. Hu Y., Ding K., Wu G., Li X., Li J., Shang Z. The effect of technology-based home cardiac rehabilitation on risk factor modifications in coronary heart disease patients. A systematic review and meta-analysis. Rev Cardiovasc Med. 2024; 25 (2): 59. doi: 10.31083/j.rcm2502059
  15. Pepera G., Antoniou V., Su J.J., Lin R., Batalik L. Comprehensive and personalized approach is a critical area for developing remote cardiac rehabilitation programs. World J Clin Cases 2024; 12 (12): 2009–2015. doi: 10.12998/wjcc.v12.i12.2009
  16. Avila A., Claes J., Buys R., Azzawi M., Vanhees L., Cornelissen V. Home-based exercise with telemonitoring guidance in patients with coronary artery disease: Does it improve long-term physical fitness? Eur J Prev Cardiol. 2020; 27 (4): 367–377. doi: 10.1177/2047487319892201
  17. Batalik L., Dosbaba F., Hartman M., Batalikova K., Spinar J. Benefits and effectiveness of using a wrist heart rate monitor as a telerehabilitation device in cardiac patients: A randomized controlled trial. Medicine (Baltimore) 2020; 99 (11): e19556. doi: 10.1097/MD.0000000000019556
  18. Bravo-Escobar R., González-Represas A., Gómez-González A.M., Montiel-Trujillo A., Aguilar-Jimenez R., Carrasco-Ruíz R., Salinas-Sánchez P. Effectiveness and safety of a home-based cardiac rehabilitation programme of mixed surveillance in patients with ischemic heart disease at moderate cardiovascular risk: A randomised, controlled clinical trial. BMC Cardiovasc Disord. 2017; 17 (1): 66. doi: 10.1186/s12872-017-0499-0
  19. Cai C., Bao Z., Wu N., Wu F., Sun G., Yang G., Chen M. A novel model of home-based, patient-tailored and mobile application-guided cardiac telerehabilitation in patients with atrial fibrillation: A randomised controlled trial. Clin Rehabil. 2022; 36 (1): 40–50. doi: 10.1177/02692155211032372
  20. Gordon N.F., English C.D., Contractor A.S., Salmon R.D., Leighton R.F., Franklin B.A., Haskell W.L. Effectiveness of three models for comprehensive cardiovascular disease risk reduction. Am J Cardiol. 2002; 89 (11): 1263–8. doi: 10.1016/s0002-9149(02)02323-8
  21. Varnfield M., Karunanithi M., Lee C.K., Honeyman E., Arnold D., Ding H., Smith C., Walters D.L. Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: results from a randomised controlled trial. Heart 2014 Nov; 100 (22): 1770–9. doi: 10.1136/heartjnl-2014-305783
  22. Maddison R., Rawstorn J.C., Stewart R.A.H., Benatar J., Whittaker R., Rolleston A., Jiang Y., Gao L., Moodie M., Warren I., Meads A., Gant N. Effects and costs of real-time cardiac telerehabilitation: randomised controlled non-inferiority trial. Heart 2019; 105 (2): 122–129. doi: 10.1136/heartjnl-2018-313189
  23. Hwang R., Bruning J., Morris N.R., Mandrusiak A., Russell T. Home-based telerehabilitation is not inferior to a centre-based program in patients with chronic heart failure: a randomised trial. J Physiother. 2017; 63 (2): 101–107. doi: 10.1016/j.jphys.2017.02.017
  24. Leppänen T., Kainulainen S., Korkalainen H., Sillanmäki S., Kulkas A., Töyräs J., Nikkonen S. Pulse oximetry: The working principle, signal formation, and applications. Adv Exp Med Biol. 2022; 1384: 205–218. doi: 10.1007/978-3-031-06413-5_12
  25. Nitzan M., Romem A., Koppel R. Pulse oximetry: fundamentals and technology update. Med Devices (Auckl) 2014 Jul 8; 7: 231–9. doi: 10.2147/MDER.S47319
  26. Pirzada P., Wilde A., Harris-Birtill D. Remote photoplethysmography for heart rate and blood oxygenation measurement: A review. IEEE Sensors Journal 2024; 24 (15): 3436–23453. doi: 10.1109/JSEN.2024.3405414
  27. Lee I., Park N., Lee H., Hwang C., Kim J.H., Park S. Systematic review on human skin-compatible wearable photoplethysmography sensors. Applied Sciences 2021; 11 (5): 2313. doi: 10.3390/app11052313
  28. Reisner A., Shaltis P.A., McCombie D., Asada H.H. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology 2008; 108 (5): 950–8. doi: 10.1097/ALN.0b013e31816c89e1
  29. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007; 28 (3): R1–39. doi: 10.1088/0967-3334/28/3/R01
  30. Marinari S., Volpe P., Simoni M., Aventaggiato M., De Benedetto F., Nardini S., Sanguinetti C.M., Palange P. Accuracy of a new pulse oximetry in detection of arterial oxygen saturation and heart rate measurements: The SOMBRERO Study. Sensors (Basel) 2022; 22 (13): 5031. doi: 10.3390/s22135031
  31. Tyagi P.K., Agarwal D. Systematic review of automated sleep apnea detection based on physiological signal data using deep learning algorithm: a meta-analysis approach. Biomed Eng Lett. 2023; 13 (3): 293–312. doi: 10.1007/s13534-023-00297-5
  32. Hearn E.L., Byford J., Wolfe C., Agyei C., Hodkinson P.D., Pollock R.D., Smith T.G. Measuring arterial oxygen saturation using wearable devices under varying conditions. Aerosp Med Hum Perform. 2023; 94 (1): 42–47. doi: 10.3357/AMHP.6078.2023
  33. Prieto-Avalos G., Cruz-Ramos N.A., Alor-Hernández G., Sánchez-Cervantes J.L., Rod¬ríguez-Mazahua L., Guarneros-Nolasco L.R. Wearable devices for physical monitoring of heart: A review. Biosensors (Basel) 2022; 12 (5): 292. doi: 10.3390/bios12050292
  34. Anliker U., Ward J.A., Lukowicz P., Tröster G., Dolveck F., Baer M., Keita. F, Schenker E.B., Catarsi F., Coluccini L., Belardinelli A., Shklarski D., Alon M., Hirt E., Schmid R., Vuskovic M. AMON: a wearable multiparameter medical monitoring and alert system. IEEE Trans Inf Technol Biomed. 2004; 8 (4): 415–27. doi: 10.1109/titb.2004.837888
  35. Prieto-Avalos G., Cruz-Ramos N.A., Alor-Hernández G., Sánchez-Cervantes J.L., Rodrí¬guez-Mazahua L., Guarneros-Nolasco L.R. Wearable devices for physical monitoring of heart: A review. Biosensors (Basel) 2022; 12 (5): 292. doi: 10.3390/bios12050292
  36. Fiore M., Bianconi A., Sicari G., Conni A., Lenzi J., Tomaiuolo G., Zito F., Golinelli D., Sanmarchi F. The use of smart rings in health monitoring – A meta-analysis. Applied Sciences 2024; 14 (23): 10778. DOI: 0.3390/app142310778
  37. Mastrototaro J.J., Leabman M., Shumate J., Tompkins K.L. Performance of a wearable ring in controlled hypoxia: A prospective observational study. JMIR Form Res. 2024; 8: e54256. doi: 10.2196/54256
  38. Choi J.Y., Jeon S., Kim H., Ha J., Jeon G.S., Lee J., Cho S.I. Health-related indicators measured using earable devices: systematic review. JMIR Mhealth Uhealth. 2022; 10 (11): e36696. doi: 10.2196/36696
  39. Azudin K., Gan K.B., Jaafar R., Ja'afar M.H. The principles of hearable photoplethysmography analysis and applications in physiological monitoring – A review. Sensors (Basel) 2023; 23 (14): 6484. doi: 10.3390/s23146484
  40. Charlton P.H., Kyriaco P.A., Mant J., Marozas V., Chowienczyk P., Alastruey J. Wearable photoplethysmography for cardiovascular monitoring. Proc IEEE Inst Electr Electron Eng. 2022; 110 (3): 355–381. doi: 10.1109/JPROC.2022.3149785
  41. D’Abbondanza N., Ferrazza M., Lucangeli L., Piuzzi E., Pallotti A. Sensorized T-shirt for cardiological patients in telemonitoring. Engineering Proceedings 2021; 11 (1): 48. doi: 10.3390/ASEC2021-11130
  42. Viderman D., Seri E., Aubakirova M., Abdildin Y., Badenes R., Bilotta F. Remote monitoring of chronic critically ill patients after hospital discharge: A systematic review. J Clin Med. 2022; 11 (4): 1010. doi: 10.3390/jcm11041010
  43. Bowles T., Trentino K.M., Lloyd A., Trentino L., Jones G., Murray K., Thompson A., Halpin S., Waterer G. Outcomes in patients receiving continuous monitoring of vital signs on general wards: A systematic review and meta-analysis of randomised controlled trials. Digit Health 2024; 10: 20552076241288826. doi: 10.1177/20552076241288826
  44. Agarwala P., Salzman S.H. Six-minute walk test: Clinical role, technique, coding, and reimbursement. Chest. 2020; 157 (3): 603–611. doi: 10.1016/j.chest.2019.10.014
  45. ATS Committee on proficiency standards for clinical pulmonary function laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002; 166 (1): 111–7. doi: 10.1164/ajrccm.166.1.at1102
  46. Coulshed A., Coulshed D., Pathan F. Systematic review of the use of the 6-minute walk test in measuring and improving prognosis in patients with ischemic heart disease. CJC Open. 2023; 5 (11): 816–825. doi: 10.1016/j.cjco.2023.08.003
  47. Ngueleu A-M., Barrette S., Buteau C., Robichaud C., Nguyen M., Everard G., Batcho C.S. Impact of pathway shape and length on the validity of the 6-minute walking test: A systematic review and meta-analysis. Sensors 2025; 25 (1): 17. doi: 10.3390/s25010017
  48. Rasekaba T., Lee A.L., Naughton M.T., Williams T.J., Holland A.E. The six-minute walk test: a useful metric for the cardiopulmonary patient. Intern Med J. 2009; 39 (8): 495–501. doi: 10.1111/j.1445-5994.2008.01880.x
  49. Williams G.J., Al-Baraikan A., Rademakers F.E., Ciravegna F., van de Vosse F.N., Lawrie A., Rothman A., Ashley E.A., Wilkins M.R., Lawford P.V., Omholt S.W., Wisløff U., Hose D.R., Chico T.J.A., Gunn J.P., Morris P.D. Wearable technology and the cardiovascular system: the future of patient assessment. Lancet Digit Health 2023; 5 (7): e467-e476. doi: 10.1016/S2589-7500(23)00087-0
  50. Matsuoka Y., Horio T., Ono M., Yoshimura R., Fukuda K., Shimizu M., Nakao K., Ito S., Asakura Y., Izumiya Y., Fukuda D., Kasayuki N., Fujimoto K. Evaluation of novel indices of walking performance taking oxygen desaturation into account during six-minute walk test in cardiovascular disease patients. Heart Vessels. 2024; 39 (10): 877–883. doi: 10.1007/s00380-024-02411-8
  51. Lettieri C.J., Nathan S.D., Browning R.F., Barnett S.D., Ahmad S., Shorr A.F. The distance-saturation product predicts mortality in idiopathic pulmonary fibrosis. Respir Med. 2006; 100 (10): 1734–41. doi: 10.1016/j.rmed.2006.02.004
  52. Torres-Castro R., Núñez-Cortés R., Larrateguy S., Alsina-Restoy X., Barberà J.A., Gimeno-Santos E., García A.R., Sibila O., Blanco I. Assessment of exercise capacity in post-COVID-19 patients: How is the appropriate test chosen? Life (Basel) 2023; 13 (3): 621. doi: 10.3390/life13030621
  53. Pimenta S.P., Rocha R.B., Baldi B.G., Kawassaki Ade M., Kairalla R.A., Carvalho C.R. Desaturation – distance ratio: a new concept for a functional assessment of interstitial lung diseases. Clinics (Sao Paulo) 2010; 65 (9): 841–6. doi: 10.1590/s1807-59322010000900005
  54. Child C.E., Kelly M.L., Sizelove H., Garvin M., Guilliams J., Kim P., Cai H.D., Luo S., McQuade K.J., Swenson E.R., Wise A.T., Lynch Y.T., Ho L.A., Brown M.B. A remote monitoring-enabled home exercise prescription for patients with interstitial lung disease at risk for exercise-induced desaturation. Respir Med. 2023; 218: 107397. doi: 10.1016/j.rmed.2023.107397
  55. Hermann M., Pekacka-Egli A.M., Witassek F., Baumgaertner R., Schoendorf S., Spielmanns M. Feasibility and efficacy of cardiopulmonary rehabilitation after COVID-19. Am J Phys Med Rehabil. 2020; 99 (10): 865–869. doi: 10.1097/PHM.0000000000001549
  56. Yang F., Liu N., Hu J.Y., Wu L.L., Su G.S., Zhong N.S., Zheng Z.G. Pulmonary rehabilitation guidelines in the principle of 4S for patients infected with 2019 novel coronavirus (2019-nCoV). Chinese 2020; 43 (3): 180–182. doi: 10.3760/cma.j.issn.1001-0939.2020.03.007
  57. Chan M., Ganti V.G., Heller J.A., Abdallah C.A., Etemadi M., Inan O.T. Enabling continuous wearable reflectance pulse oximetry at the sternum. Biosensors (Basel) 2021; 11 (12): 521. doi: 10.3390/bios11120521
  58. Nascimento L.M.S.D., Bonfati L.V., Freitas M.B., Mendes Junior J.J.A., Siqueira H.V., Stevan S.L. Jr. Sensors and systems for physical rehabilitation and health monitoring – A review. Sensors (Basel) 2020; 20 (15): 4063. doi: 10.3390/s20154063
  59. Marathe S., Zeeshan D., Thomas T., Vidhya S. А Wireless patient monitoring system using integrated ECG module, pulse oximeter, blood pressure and temperature sensor. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). Vellore, India 2019; 1–4. DOI: 0.1109/ViTECoN.2019.8899541
  60. Joseph I., Anthony P., Astuti W., Lie Z.S., Iwan Solihin M. Inpatient monitoring system: Temperature, oxygen saturation, blood pressure, heart rate, and infusion automation based on ESP 32, IoT, and mobile application. 7th International Conference of Computer and Informatics Engineering (IC2IE). Bali, Indonesia 2024; 1–7. doi: 10.1109/IC2IE63342.2024.10747852
  61. Nwibor C., Haxha S., Ali M., Sakel M., Haxha A., Saunders K. Remote Health Monitoring System for the estimation of blood pressure, heart rate, and blood oxygen saturation level. IEEE Sensors Journal 2023; 23 (5): 401–5411. doi: 10.1109/JSEN.2023.3235977
  62. Nardini S., Corbanese U., Visconti A., Mule J.D., Sanguinetti C.M., De Benedetto F. Improving the management of patients with chronic cardiac and respiratory diseases by extending pulse-oximeter uses: the dynamic pulse-oximetry. Multidiscip Respir Med. 2023; 18 (1): 922. doi: 10.4081/mrm.2023.922

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».