Potential application of continuous pulse oximetry in cardiac rehabilitation programs: scientific review
- Authors: Mishina I.E.1,2, Blinova K.A.1, Parfenov A.S.1, Berezina E.V.1, Khoroshilova O.V.3, Zhaburina M.V.1
-
Affiliations:
- Ivanovo State Medical University
- Saint Petersburg State University
- Cardiology Center
- Issue: Vol 42, No 4 (2025)
- Pages: 5-19
- Section: Review of literature
- URL: https://ogarev-online.ru/PMJ/article/view/312913
- DOI: https://doi.org/10.17816/pmj4245-19
- ID: 312913
Cite item
Full Text
Abstract
Real-time monitoring of patients' vital signs and feedback in virtual rehabilitation can be achieved through the use of remote technologies. Wearable sensors during training allow monitoring of heart rate, electrocardiography, and blood pressure. Oxygen saturation indicators are measured less frequently, although they may have greater diagnostic value. The search was conducted in PubMed, Scopus, Web of Science, PEDro, and Google Scholar databases. As of January, 62 sources, including Cochrane and systematic reviews, had been selected.
Blood oxygen saturation can only be measured using a pulse oximeter, which operates on the Bouguer-Lambert-Beer law and emits two wavelengths; the measurement can be carried out by transmission and reflective methods. In medically certified devices, the data are transmitted to the technological system and evaluated by trained medical personnel. Bracelets and rings have shown the greatest convenience and reliability for fixing pulse oximeter. Continuous monitoring of oxygen saturation during stress tests and physical training ensures their safety and allows the load adjustment. When connected to a telemedicine platform, the system should ensure direct interaction between the doctor and the patient with monitoring of vital parameters.
When conducting cardiac rehabilitation, a reliable certified medical device able to provide a continuous monitoring is required. Monitoring of vital parameters is carried out using a device with the necessary sensors, a patient feedback system and a telemedicine platform accessible to medical personnel for storing and analyzing the obtained data.
Full Text
##article.viewOnOriginalSite##About the authors
I. E. Mishina
Ivanovo State Medical University; Saint Petersburg State University
Email: xenny7@yandex.ru
ORCID iD: 0000-0002-7659-8008
DSc (Medicine), Professor, Professor of the Department of Hospital Therapy, Cardiology and General Medical Practice, Professor of the Department of Postgraduate Medical Education, First Deputy Director of the Medical Institute
Russian Federation, Ivanovo; Saint PetersburgK. A. Blinova
Ivanovo State Medical University
Author for correspondence.
Email: xenny7@yandex.ru
ORCID iD: 0000-0002-2896-8764
PhD (Medicine), Associate Professor of the Department of Oncology and Radiation Therapy
Russian Federation, IvanovoA. S. Parfenov
Ivanovo State Medical University
Email: xenny7@yandex.ru
ORCID iD: 0000-0002-5729-4121
PhD (Technical Sciences), Associate Professor of the Department of Physics, Chemistry and Mathematics
Russian Federation, IvanovoE. V. Berezina
Ivanovo State Medical University
Email: xenny7@yandex.ru
ORCID iD: 0000-0002-6958-0619
Doctor of Technical Sciences, Associate Professor, Head of the Department of Physics, Chemistry and Mathematics
Russian Federation, IvanovoO. V. Khoroshilova
Cardiology Center
Email: xenny7@yandex.ru
ORCID iD: 0000-0003-0487-7697
Cardiologist
Russian Federation, IvanovoM. V. Zhaburina
Ivanovo State Medical University
Email: xenny7@yandex.ru
ORCID iD: 0000-0003-4028-0708
PhD (Medicine), Associate Professor of the Department of Otorhinolaryngology and Ophthalmology
Russian Federation, IvanovoReferences
- Chong B., Jayabaskaran J., Jauhari S.M., Chan S.P., Goh R., Kueh M.T.W., Li H., Chin Y.H., Kong G., Anand V.V., Wang J.W., Muthiah M., Jain V., Mehta A., Lim S.L., Foo R., Figtree G.A., Nicholls S.J., Mamas M.A., Januzzi J.L., Chew N.W.S., Richards A.M., Chan M.Y. Global burden of cardiovascular diseases: projections from 2025 to 2050. Eur J Prev Cardiol. 2024: zwae281. doi: 10.1093/eurjpc/zwae281
- Dibben G.O., Faulkner J., Oldridge N., Rees K., Thompson D.R., Zwisler A.D., Taylor R.S. Exercise-based cardiac rehabilitation for coronary heart disease: a meta-analysis. Eur Heart J. 2023; 44 (6): 452–469. doi: 10.1093/eurheartj/ehac747
- Posadzki P., Pieper D., Bajpai R., Makaruk H., Könsgen N., Neuhaus A.L., Semwal M. Exercise/physical activity and health outcomes: an overview of Cochrane systematic reviews. BMC Public Health. 2020; 20 (1): 1724. doi: 10.1186/s12889-020-09855-3
- Дайхес А.Н., Шулаев А.В., Шикалева А.А., Выговская Л.Е., Садыков М.М. Эффективность медицинской реабилитации с использованием телемедицинских технологий (обзор литературы). Общественное здоровье и здравоохранение 2023; 1 (76): 13–26. / Daiches A.N., Shulaev A.V., Shikaleva A.A., Vygovskaya L.E., Sadykov M.M. Efficiency of medical rehabilitation using telemedicine technologies (literature review). Public Health and Healthcare 2023; 1 (76): 13–26 (in Russian).
- Dafny H.A., Champion S., Gebremichael L.G., Pearson V., Hendriks J.M., Clark R.A., Pinero de Plaza M.A., Gulyani A., Hines S., Beleigoli A. Cardiac rehabilitation, physical activity, and the effectiveness of activity monitoring devices on cardiovascular patients: an umbrella review of systematic reviews. Eur Heart J Qual Care Clin Outcomes 2023; 9 (4): 323–330. doi: 10.1093/ehjqcco/qcad005
- Каменская О.В., Логинова И.Ю., Клинкова А.С., Таркова А.Р., Найденов Р.А., Кретов Е.И., Ломиворотов В.В. Телемедицинские системы в кардиореабилитации: обзор современных возможностей и перспективы применения в клинической практике. Российский кардиологический журнал 2020; 25 (6): 3365. doi: 10.15829/1560-4071-2020-3365 / Kamenskaya O.V., Loginova I.Yu., Klinkova A.S., Tarkova A.R., Naidenov R.A., Kretov E.I., Lomivorotov V.V. Telemedicine systems in cardiac rehabilitation: a review of modern capabilities and prospects for application in clinical practice. Russian Journal of Cardiology 2020; 25 (6): 3365. doi: 10.15829/1560-4071-2020-3365 (in Russian).
- McDonagh S.T., Dalal H., Moore S., Clark C.E., Dean S.G., Jolly K., Cowie A., Afzal J., Taylor R.S. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst Rev. 2023; 10 (10): CD007130. doi: 10.1002/14651858.CD007130.pub5
- Golbus J.R., Lopez-Jimenez F., Barac A., Cornwell W.K. 3rd, Dunn P., Forman D.E., Martin S.S., Schorr E.N., Supervia M. Digital technologies in cardiac rehabilitation: a science advisory from the American heart association. Circulation 2023; 148 (1): 95–107. doi: 10.1161/CIR.0000000000001150
- Dwiputra B., Santoso A., Purwowiyoto B.S., Radi B., Ambari A.M., Desandri D.R., Fatrin S., Pandhita B.A.W. Smartphone-based cardiac rehabilitation program improves functional capacity in coronary heart disease patients: A Systematic Review and Meta-Analysis. Glob Heart. 2023; 18 (1): 42. doi: 10.5334/gh.1253
- Heimer M., Schmitz S., Teschler M., Schäfer H., Douma E.R., Habibovic M., Kop W.J., Meyer T., Mooren F.C., Schmitz B. eHealth for maintenance cardiovascular rehabilitation: a systematic review and meta-analysis. Eur J Prev Cardiol. 2023; 30 (15): 1634–1651. doi: 10.1093/eurjpc/zwad145
- Antoniou V., Kapreli E., Davos C.H., Batalik L., Pepera G. Safety and long-term outcomes of remote cardiac rehabilitation in coronary heart disease patients: A systematic review. Digit Health. 2024; 10: 20552076241237661. doi: 10.1177/20552076241237661
- Chong M.S., Sit J.W.H., Karthikesu K., Chair S.Y. Effectiveness of technology-assisted cardiac rehabilitation: A systematic review and meta-analysis. Int J Nurs Stud. 2021; 124: 104087. doi: 10.1016/j.ijnurstu.2021.104087
- Jones A.K., Yan C.L., Rivera Rodriquez B.P., Kaur S., Andrade-Bucknor S. Role of wearable devices in cardiac telerehabilitation: A scoping review. PLoS One 2023; 18 (5): e0285801. doi: 10.1371/journal.pone.0285801
- Hu Y., Ding K., Wu G., Li X., Li J., Shang Z. The effect of technology-based home cardiac rehabilitation on risk factor modifications in coronary heart disease patients. A systematic review and meta-analysis. Rev Cardiovasc Med. 2024; 25 (2): 59. doi: 10.31083/j.rcm2502059
- Pepera G., Antoniou V., Su J.J., Lin R., Batalik L. Comprehensive and personalized approach is a critical area for developing remote cardiac rehabilitation programs. World J Clin Cases 2024; 12 (12): 2009–2015. doi: 10.12998/wjcc.v12.i12.2009
- Avila A., Claes J., Buys R., Azzawi M., Vanhees L., Cornelissen V. Home-based exercise with telemonitoring guidance in patients with coronary artery disease: Does it improve long-term physical fitness? Eur J Prev Cardiol. 2020; 27 (4): 367–377. doi: 10.1177/2047487319892201
- Batalik L., Dosbaba F., Hartman M., Batalikova K., Spinar J. Benefits and effectiveness of using a wrist heart rate monitor as a telerehabilitation device in cardiac patients: A randomized controlled trial. Medicine (Baltimore) 2020; 99 (11): e19556. doi: 10.1097/MD.0000000000019556
- Bravo-Escobar R., González-Represas A., Gómez-González A.M., Montiel-Trujillo A., Aguilar-Jimenez R., Carrasco-Ruíz R., Salinas-Sánchez P. Effectiveness and safety of a home-based cardiac rehabilitation programme of mixed surveillance in patients with ischemic heart disease at moderate cardiovascular risk: A randomised, controlled clinical trial. BMC Cardiovasc Disord. 2017; 17 (1): 66. doi: 10.1186/s12872-017-0499-0
- Cai C., Bao Z., Wu N., Wu F., Sun G., Yang G., Chen M. A novel model of home-based, patient-tailored and mobile application-guided cardiac telerehabilitation in patients with atrial fibrillation: A randomised controlled trial. Clin Rehabil. 2022; 36 (1): 40–50. doi: 10.1177/02692155211032372
- Gordon N.F., English C.D., Contractor A.S., Salmon R.D., Leighton R.F., Franklin B.A., Haskell W.L. Effectiveness of three models for comprehensive cardiovascular disease risk reduction. Am J Cardiol. 2002; 89 (11): 1263–8. doi: 10.1016/s0002-9149(02)02323-8
- Varnfield M., Karunanithi M., Lee C.K., Honeyman E., Arnold D., Ding H., Smith C., Walters D.L. Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: results from a randomised controlled trial. Heart 2014 Nov; 100 (22): 1770–9. doi: 10.1136/heartjnl-2014-305783
- Maddison R., Rawstorn J.C., Stewart R.A.H., Benatar J., Whittaker R., Rolleston A., Jiang Y., Gao L., Moodie M., Warren I., Meads A., Gant N. Effects and costs of real-time cardiac telerehabilitation: randomised controlled non-inferiority trial. Heart 2019; 105 (2): 122–129. doi: 10.1136/heartjnl-2018-313189
- Hwang R., Bruning J., Morris N.R., Mandrusiak A., Russell T. Home-based telerehabilitation is not inferior to a centre-based program in patients with chronic heart failure: a randomised trial. J Physiother. 2017; 63 (2): 101–107. doi: 10.1016/j.jphys.2017.02.017
- Leppänen T., Kainulainen S., Korkalainen H., Sillanmäki S., Kulkas A., Töyräs J., Nikkonen S. Pulse oximetry: The working principle, signal formation, and applications. Adv Exp Med Biol. 2022; 1384: 205–218. doi: 10.1007/978-3-031-06413-5_12
- Nitzan M., Romem A., Koppel R. Pulse oximetry: fundamentals and technology update. Med Devices (Auckl) 2014 Jul 8; 7: 231–9. doi: 10.2147/MDER.S47319
- Pirzada P., Wilde A., Harris-Birtill D. Remote photoplethysmography for heart rate and blood oxygenation measurement: A review. IEEE Sensors Journal 2024; 24 (15): 3436–23453. doi: 10.1109/JSEN.2024.3405414
- Lee I., Park N., Lee H., Hwang C., Kim J.H., Park S. Systematic review on human skin-compatible wearable photoplethysmography sensors. Applied Sciences 2021; 11 (5): 2313. doi: 10.3390/app11052313
- Reisner A., Shaltis P.A., McCombie D., Asada H.H. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology 2008; 108 (5): 950–8. doi: 10.1097/ALN.0b013e31816c89e1
- Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007; 28 (3): R1–39. doi: 10.1088/0967-3334/28/3/R01
- Marinari S., Volpe P., Simoni M., Aventaggiato M., De Benedetto F., Nardini S., Sanguinetti C.M., Palange P. Accuracy of a new pulse oximetry in detection of arterial oxygen saturation and heart rate measurements: The SOMBRERO Study. Sensors (Basel) 2022; 22 (13): 5031. doi: 10.3390/s22135031
- Tyagi P.K., Agarwal D. Systematic review of automated sleep apnea detection based on physiological signal data using deep learning algorithm: a meta-analysis approach. Biomed Eng Lett. 2023; 13 (3): 293–312. doi: 10.1007/s13534-023-00297-5
- Hearn E.L., Byford J., Wolfe C., Agyei C., Hodkinson P.D., Pollock R.D., Smith T.G. Measuring arterial oxygen saturation using wearable devices under varying conditions. Aerosp Med Hum Perform. 2023; 94 (1): 42–47. doi: 10.3357/AMHP.6078.2023
- Prieto-Avalos G., Cruz-Ramos N.A., Alor-Hernández G., Sánchez-Cervantes J.L., Rod¬ríguez-Mazahua L., Guarneros-Nolasco L.R. Wearable devices for physical monitoring of heart: A review. Biosensors (Basel) 2022; 12 (5): 292. doi: 10.3390/bios12050292
- Anliker U., Ward J.A., Lukowicz P., Tröster G., Dolveck F., Baer M., Keita. F, Schenker E.B., Catarsi F., Coluccini L., Belardinelli A., Shklarski D., Alon M., Hirt E., Schmid R., Vuskovic M. AMON: a wearable multiparameter medical monitoring and alert system. IEEE Trans Inf Technol Biomed. 2004; 8 (4): 415–27. doi: 10.1109/titb.2004.837888
- Prieto-Avalos G., Cruz-Ramos N.A., Alor-Hernández G., Sánchez-Cervantes J.L., Rodrí¬guez-Mazahua L., Guarneros-Nolasco L.R. Wearable devices for physical monitoring of heart: A review. Biosensors (Basel) 2022; 12 (5): 292. doi: 10.3390/bios12050292
- Fiore M., Bianconi A., Sicari G., Conni A., Lenzi J., Tomaiuolo G., Zito F., Golinelli D., Sanmarchi F. The use of smart rings in health monitoring – A meta-analysis. Applied Sciences 2024; 14 (23): 10778. DOI: 0.3390/app142310778
- Mastrototaro J.J., Leabman M., Shumate J., Tompkins K.L. Performance of a wearable ring in controlled hypoxia: A prospective observational study. JMIR Form Res. 2024; 8: e54256. doi: 10.2196/54256
- Choi J.Y., Jeon S., Kim H., Ha J., Jeon G.S., Lee J., Cho S.I. Health-related indicators measured using earable devices: systematic review. JMIR Mhealth Uhealth. 2022; 10 (11): e36696. doi: 10.2196/36696
- Azudin K., Gan K.B., Jaafar R., Ja'afar M.H. The principles of hearable photoplethysmography analysis and applications in physiological monitoring – A review. Sensors (Basel) 2023; 23 (14): 6484. doi: 10.3390/s23146484
- Charlton P.H., Kyriaco P.A., Mant J., Marozas V., Chowienczyk P., Alastruey J. Wearable photoplethysmography for cardiovascular monitoring. Proc IEEE Inst Electr Electron Eng. 2022; 110 (3): 355–381. doi: 10.1109/JPROC.2022.3149785
- D’Abbondanza N., Ferrazza M., Lucangeli L., Piuzzi E., Pallotti A. Sensorized T-shirt for cardiological patients in telemonitoring. Engineering Proceedings 2021; 11 (1): 48. doi: 10.3390/ASEC2021-11130
- Viderman D., Seri E., Aubakirova M., Abdildin Y., Badenes R., Bilotta F. Remote monitoring of chronic critically ill patients after hospital discharge: A systematic review. J Clin Med. 2022; 11 (4): 1010. doi: 10.3390/jcm11041010
- Bowles T., Trentino K.M., Lloyd A., Trentino L., Jones G., Murray K., Thompson A., Halpin S., Waterer G. Outcomes in patients receiving continuous monitoring of vital signs on general wards: A systematic review and meta-analysis of randomised controlled trials. Digit Health 2024; 10: 20552076241288826. doi: 10.1177/20552076241288826
- Agarwala P., Salzman S.H. Six-minute walk test: Clinical role, technique, coding, and reimbursement. Chest. 2020; 157 (3): 603–611. doi: 10.1016/j.chest.2019.10.014
- ATS Committee on proficiency standards for clinical pulmonary function laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002; 166 (1): 111–7. doi: 10.1164/ajrccm.166.1.at1102
- Coulshed A., Coulshed D., Pathan F. Systematic review of the use of the 6-minute walk test in measuring and improving prognosis in patients with ischemic heart disease. CJC Open. 2023; 5 (11): 816–825. doi: 10.1016/j.cjco.2023.08.003
- Ngueleu A-M., Barrette S., Buteau C., Robichaud C., Nguyen M., Everard G., Batcho C.S. Impact of pathway shape and length on the validity of the 6-minute walking test: A systematic review and meta-analysis. Sensors 2025; 25 (1): 17. doi: 10.3390/s25010017
- Rasekaba T., Lee A.L., Naughton M.T., Williams T.J., Holland A.E. The six-minute walk test: a useful metric for the cardiopulmonary patient. Intern Med J. 2009; 39 (8): 495–501. doi: 10.1111/j.1445-5994.2008.01880.x
- Williams G.J., Al-Baraikan A., Rademakers F.E., Ciravegna F., van de Vosse F.N., Lawrie A., Rothman A., Ashley E.A., Wilkins M.R., Lawford P.V., Omholt S.W., Wisløff U., Hose D.R., Chico T.J.A., Gunn J.P., Morris P.D. Wearable technology and the cardiovascular system: the future of patient assessment. Lancet Digit Health 2023; 5 (7): e467-e476. doi: 10.1016/S2589-7500(23)00087-0
- Matsuoka Y., Horio T., Ono M., Yoshimura R., Fukuda K., Shimizu M., Nakao K., Ito S., Asakura Y., Izumiya Y., Fukuda D., Kasayuki N., Fujimoto K. Evaluation of novel indices of walking performance taking oxygen desaturation into account during six-minute walk test in cardiovascular disease patients. Heart Vessels. 2024; 39 (10): 877–883. doi: 10.1007/s00380-024-02411-8
- Lettieri C.J., Nathan S.D., Browning R.F., Barnett S.D., Ahmad S., Shorr A.F. The distance-saturation product predicts mortality in idiopathic pulmonary fibrosis. Respir Med. 2006; 100 (10): 1734–41. doi: 10.1016/j.rmed.2006.02.004
- Torres-Castro R., Núñez-Cortés R., Larrateguy S., Alsina-Restoy X., Barberà J.A., Gimeno-Santos E., García A.R., Sibila O., Blanco I. Assessment of exercise capacity in post-COVID-19 patients: How is the appropriate test chosen? Life (Basel) 2023; 13 (3): 621. doi: 10.3390/life13030621
- Pimenta S.P., Rocha R.B., Baldi B.G., Kawassaki Ade M., Kairalla R.A., Carvalho C.R. Desaturation – distance ratio: a new concept for a functional assessment of interstitial lung diseases. Clinics (Sao Paulo) 2010; 65 (9): 841–6. doi: 10.1590/s1807-59322010000900005
- Child C.E., Kelly M.L., Sizelove H., Garvin M., Guilliams J., Kim P., Cai H.D., Luo S., McQuade K.J., Swenson E.R., Wise A.T., Lynch Y.T., Ho L.A., Brown M.B. A remote monitoring-enabled home exercise prescription for patients with interstitial lung disease at risk for exercise-induced desaturation. Respir Med. 2023; 218: 107397. doi: 10.1016/j.rmed.2023.107397
- Hermann M., Pekacka-Egli A.M., Witassek F., Baumgaertner R., Schoendorf S., Spielmanns M. Feasibility and efficacy of cardiopulmonary rehabilitation after COVID-19. Am J Phys Med Rehabil. 2020; 99 (10): 865–869. doi: 10.1097/PHM.0000000000001549
- Yang F., Liu N., Hu J.Y., Wu L.L., Su G.S., Zhong N.S., Zheng Z.G. Pulmonary rehabilitation guidelines in the principle of 4S for patients infected with 2019 novel coronavirus (2019-nCoV). Chinese 2020; 43 (3): 180–182. doi: 10.3760/cma.j.issn.1001-0939.2020.03.007
- Chan M., Ganti V.G., Heller J.A., Abdallah C.A., Etemadi M., Inan O.T. Enabling continuous wearable reflectance pulse oximetry at the sternum. Biosensors (Basel) 2021; 11 (12): 521. doi: 10.3390/bios11120521
- Nascimento L.M.S.D., Bonfati L.V., Freitas M.B., Mendes Junior J.J.A., Siqueira H.V., Stevan S.L. Jr. Sensors and systems for physical rehabilitation and health monitoring – A review. Sensors (Basel) 2020; 20 (15): 4063. doi: 10.3390/s20154063
- Marathe S., Zeeshan D., Thomas T., Vidhya S. А Wireless patient monitoring system using integrated ECG module, pulse oximeter, blood pressure and temperature sensor. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). Vellore, India 2019; 1–4. DOI: 0.1109/ViTECoN.2019.8899541
- Joseph I., Anthony P., Astuti W., Lie Z.S., Iwan Solihin M. Inpatient monitoring system: Temperature, oxygen saturation, blood pressure, heart rate, and infusion automation based on ESP 32, IoT, and mobile application. 7th International Conference of Computer and Informatics Engineering (IC2IE). Bali, Indonesia 2024; 1–7. doi: 10.1109/IC2IE63342.2024.10747852
- Nwibor C., Haxha S., Ali M., Sakel M., Haxha A., Saunders K. Remote Health Monitoring System for the estimation of blood pressure, heart rate, and blood oxygen saturation level. IEEE Sensors Journal 2023; 23 (5): 401–5411. doi: 10.1109/JSEN.2023.3235977
- Nardini S., Corbanese U., Visconti A., Mule J.D., Sanguinetti C.M., De Benedetto F. Improving the management of patients with chronic cardiac and respiratory diseases by extending pulse-oximeter uses: the dynamic pulse-oximetry. Multidiscip Respir Med. 2023; 18 (1): 922. doi: 10.4081/mrm.2023.922
Supplementary files
