Assessment of cell-mediated immune responses to SARS-CoV-2 in Syrian hamsters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The pandemic caused by the SARS-CoV-2 virus at the end of 2019 remains to be a serious healthcare problem. Constant antigenic drift of the pathogen led to a decrease of licensed COVID-19 vaccines effectiveness. And the development of broad-spectrum vaccines with high effectiveness rate against evolutionarily divergent SARS-CoV-2 variants remains an urgent issue. Unlike virus-specific antibodies with limited spectrum of action, T-cell immunity has a wider cross-protective potential. Syrian hamsters are the most appropriate model for preclinical evaluation of new vaccine candidates, since these animals are susceptible to SARS-CoV-2 infection and show clinical symptoms of the disease. However, study of T-cell vaccine response in hamsters is complicated by the lack of available reagents and test systems for adequate assessment of the virus-specific cellular immunity levels after vaccination.

AIM: In this work, we report an optimized protocol of stimulation of Syrian hamsters’ immune cells with a live SARS-CoV-2 virus to assess virus-specific T-cell responses.

MATERIALS AND METHODS: Intranasal infection of animals with SARS-CoV-2 virus followed by stimulation of immune cells with different doses of whole live coronavirus and counting of IFNγ-producing cells by ELISpot method.

RESULTS: Stimulation of spleen and lung cells with SARS-CoV-2 at a dose 0.1 TCID50/cell is the most optimal viral concentration for detecting maximum of cytokine-producing cells in SARS-CoV-2-infected animals. Stimulation of cells with whole virus revealed greater number of virus-specific cells compared to a stimulation with pools of SARS-CoV-2 lyophilized peptides (S and N proteins).

CONCLUSIONS: Overall, the new methodology allows assessment of the immunogenicity of COVID-19 T-cell vaccines more accurately in preclinical studies using the Syrian hamsters model.

About the authors

Daria А. Mezhenskaya

Institute of Experimental Medicine

Author for correspondence.
Email: dasmez@iemspb.ru
ORCID iD: 0000-0001-6922-7682
SPIN-code: 5799-8802
Scopus Author ID: 57188763106

Research Associate of Laboratory of Immunology and Prevention of Viral Infections, A.A. Smorodintsev Department of Virology

Russian Federation, Saint Petersburg

Irina N. Isakova-Sivak

Institute of Experimental Medicine

Email: isakova.sivak@iemspb.ru
ORCID iD: 0000-0002-2801-1508
SPIN-code: 3469-3600
Scopus Author ID: 23973026600

Dr. Sci. (Biol.), Head of Laboratory of Immunology and Prevention of Viral Infections, A.A. Smorodintsev Department of Virology

Russian Federation, Saint Petersburg

Larisa G. Rudenko

Institute of Experimental Medicine

Email: vaccine@mail.ru
ORCID iD: 0000-0002-0107-9959
SPIN-code: 4181-1372
Scopus Author ID: 7005033248

MD, Dr. Sci. (Med.), Professor, Head of the A.A. Smorodintsev Department of Virology

Russian Federation, Saint Petersburg

References

  1. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Internet]. Available from: https://coronavirus.jhu.edu/map.html. Accessed: May 1, 2022.
  2. Zheng C, Shao W, Chen X, et al. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis. 2022;114:252–260. doi: 10.1016/j.ijid.2021.11.0093
  3. Tatsi EB, Filippatos F, Michos A. SARS-CoV-2 variants and effectiveness of vaccines: a review of current evidence. Epidemiol Infect. 2021;149:e237. doi: 10.1017/S0950268821002430
  4. Kedzierska K, Thomas PG. Count on us: T cells in SARS-CoV-2 infection and vaccination. Cell Rep Med. 2022;3(3):100562. doi: 10.1016/j.xcrm.2022.100562
  5. Zollner A, Watschinger C, Rössler A, et al. B and T cell response to SARS-CoV-2 vaccination in health care professionals with and without previous COVID-19. EBioMedicine. 2021;70:103539. doi: 10.1016/j.ebiom.2021.103539
  6. Abbasi J. COVID-19 vaccine focused on T-Cell response promising in early trial. JAMA. 2022;327(2):115. doi: 10.1001/jama.2021.24118
  7. Cox JH, Ferrari G, Janetzki S. Measurement of cytokine release at the single cell level using the ELISPOT assay. Methods. 2006;38(4):274–282. doi: 10.1016/j.ymeth.2005.11.006
  8. Bonifacius A, Tischer-Zimmermann S, Santamorena MM, et al. Rapid manufacturing of highly cytotoxic clinical-grade SARS-CoV-2-specific T cell products covering SARS-CoV-2 and its variants for adoptive T cell therapy. Front Bioeng Biotechnol. 2022;10:867042. doi: 10.3389/fbioe.2022.867042
  9. Mak WA, Koeleman JGM, Ong DSY. Development of an in-house SARS-CoV-2 interferon-gamma ELISpot and plate reader-free spot detection method. J Virol Methods. 2022;300:114398. doi: 10.1016/j.jviromet.2021.114398
  10. Matyushenko V, Kotomina T, Kudryavtsev I, et al. Conserved T-cell epitopes of respiratory syncytial virus (RSV) delivered by recombinant live attenuated influenza vaccine viruses efficiently induce RSV-specific lung-localized memory T cells and augment influenza-specific resident memory T-cell responses. Antiviral Res. 2020;182:104864. doi: 10.1016/j.antiviral.2020.104864
  11. Fiolet T, Kherabi Y, MacDonald CJ, et al. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022;28(2):202–221. doi: 10.1016/j.cmi.2021.10.005
  12. Martinez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, et al. SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants. Front Immunol. 2021;12:701501. doi: 10.3389/fimmu.2021.701501
  13. Swadling L, Maini MK. T cells in COVID-19 – united in diversity. Nat Immunol. 2020;21(11):1307–1308. doi: 10.1038/s41590-020-0798-y
  14. Rong Y, Wang F, Liu J, et al. Clinical characteristics and risk factors of mild-to-moderate COVID-19 patients with false-negative SARS-CoV-2 nucleic acid. J Med Virol. 2021;93(1):448–455. doi: 10.1002/jmv.26242
  15. Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021;21(2):73–82. doi: 10.1038/s41577-020-00480-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Detection of antigen-specific response to SARS-CoV-2 in the spleens and lung cells of Syrian hamsters using ELISpot assay: a — example of data obtained after analysis of individual wells of the ELISpot plate using the AID vSpot Spectrum; b — number of spots after stimulation of the cells of infected animals. Syrian hamsters were infected twice using SARS-CoV-2 virus or PBS. Data were analyzed by two-way ANOVA with Tukey’s post-hoc multiple analyses test. MOI — multiplicity of infection. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001

Download (352KB)

Copyright (c) 2022 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».