原发性脑外肿瘤磁核磁共振成像误诊:临床病例系列
- 作者: Surovcev E.N.1,2, Kapishnikov A.V.1
-
隶属关系:
- Samara State Medical University
- Dr. Sergey Berezin Medical Institute (MIBS)
- 期: 卷 5, 编号 3 (2024)
- 页面: 642-655
- 栏目: 临床病例及临床病例的系列
- URL: https://ogarev-online.ru/DD/article/view/310046
- DOI: https://doi.org/10.17816/DD626158
- ID: 310046
如何引用文章
全文:
详细
原发性脑外肿瘤是脑膜和颅神经的良性和恶性肿瘤。其术前鉴别诊断基于核磁共振成像(MRI)符号学分析。对这类肿瘤进行分类的关键点在于以下特征:增生形成的结构、对比度的性质、增生与脑组织的分界、是否与脑膜或颅神经相互连接。
在大多数具有典型符号学特征的病例中,根据核磁共振成像数据的视觉分析对各种类型的原发性脑外肿瘤进行鉴别诊断并不困难。在核磁共振成像表现不典型的情况下,很难可靠地区分肿瘤。在这种情况下,最大的困难在于区分不同恶性程度的脑膜瘤,区分单发性纤维瘤和脑膜瘤,以及位于脑桥小脑角肿瘤的类型确定。
本文介绍了一系列观察结果,其中包括基于核磁共振成像数据对原发性脑外肿瘤进行鉴别诊断时误诊的最典型情况。所有呈现的增生形成物均经过术后组织学检查验证。
经临床实例分析表明,考虑符号学的总体特征可以减少误诊的数量。
作者简介
Evgeniy N. Surovcev
Samara State Medical University; Dr. Sergey Berezin Medical Institute (MIBS)
编辑信件的主要联系方式.
Email: evgeniisurovcev@mail.ru
ORCID iD: 0000-0002-8236-833X
SPIN 代码: 5252-5661
Scopus 作者 ID: 57224906215
MD
俄罗斯联邦, Samara; TogliattiAleksandr V. Kapishnikov
Samara State Medical University
Email: a.v.kapishnikov@samsmu.ru
ORCID iD: 0000-0002-6858-372X
SPIN 代码: 6213-7455
Scopus 作者 ID: 6507900025
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Samara参考
- Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology. 2021;23(8):1231–1251. doi: 10.1093/neuonc/noab106
- Osborn AG, Salzman KL, Jhaveri MD. Diagnostic Imaging. Brain. Moscow: Izdatel’stvo Panfilova; 2018.
- Ostrom QT, Price M, Neff C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro-oncology. 2022;5(24 suppl. 5):v1–v95. doi: 10.1093/neuonc/noac202
- Goldbrunner R, Weller M, Regis J, et al. EANO guideline on the diagnosis and treatment of vestibular schwannoma. Neuro-Oncology. 2020;22(1):31–45. doi: 10.1093/neuonc/noz153
- Goldbrunner R, Stavrinou P, Jenkinson MD, et al. EANO guideline on the diagnosis and management of meningiomas. Neuro-Oncology. 2021;23(11):1821–1834. doi: 10.1093/neuonc/noab150
- Roos DE, Patel SG, Potter AE, Zacest AC. When is an acoustic neuroma not an acoustic neuroma? Pitfalls for radiosurgeons. Journal of medical imaging and radiation oncology. 2015;59(4):474–479. doi: 10.1111/1754-9485.12328
- Cohen-Inbar O. Nervous System Hemangiopericytoma. The Canadian journal of neurological sciences. 2020;47(1):18–29. doi: 10.1017/cjn.2019.311
- Shin DW, Kim JH, Chong S, et al. Intracranial solitary fibrous tumor/hemangiopericytoma: tumor reclassification and assessment of treatment outcome via the 2016 WHO classification. Journal of Neuro-oncology. 2021;154(2):171–178. doi: 10.1007/s11060-021-03733-7
- Saigal G, Pisani L, Allakhverdieva E, et al. Utility of Microhemorrhage as a Diagnostic Tool in Distinguishing Vestibular Schwannomas from other Cerebellopontine Angle (CPA) Tumors. Indian Journal of Otolaryngology and Head and Neck Surgery. 2021;73(3):321–326. doi: 10.1007/s12070-021-02372-8
- Fountain DM, Young AMH, Santarius T. Malignant meningiomas. Handbook of Clinical Neurology. 2020;170:245–250. doi: 10.1016/B978-0-12-822198-3.00044-6
- Kabashi S, Ugurel MS, Dedushi K, Mucaj S. The Role of Magnetic Resonance Imaging (MRI) in Diagnostics of Acoustic Schwannoma. Acta Informatica Medica. 2020;28(4):287–291. doi: 10.5455/aim.2020.28.287-291
- Yan PF, Yan L, Zhang Z, et al. Accuracy of conventional MRI for preoperative diagnosis of intracranial tumors: A retrospective cohort study of 762 cases. International Journal of Surgery. 2016;36(Pt A):109–117. doi: 10.1016/j.ijsu.2016.10.023
- Ranabhat K, Bishokarma S, Agrawal P, et al. Role of MR Morphology and Diffusion-Weighted Imaging in the Evaluation of Meningiomas: Radio-Pathologic Correlation. JNMA. 2019;57(215):37–44. doi: 10.31729/jnma.3968
- Adeli A, Hess K, Mawrin C, et al. Prediction of brain invasion in patients with meningiomas using preoperative magnetic resonance imaging. Oncotarget. 2018;9(89):35974–35982. doi: 10.18632/oncotarget.26313
- Lin BJ, Chou KN, Kao HW, et al. Correlation between magnetic resonance imaging grading and pathological grading in meningioma. Journal of Neurosurgery. 2014;121(5):1201–1208. doi: 10.3171/2014.7.JNS132359
- Verma PK, Nangarwal B, Verma J, et al. A clinico-pathological and neuro-radiological study of angiomatous meningioma: Aggressive look with benign behaviour. Journal of Clinical Neuroscience. 2021;83:43–48. doi: 10.1016/j.jocn.2020.11.032
- El-Abtah ME, Murayi R, Lee J, et al. Radiological Differentiation Between Intracranial Meningioma and Solitary Fibrous Tumor/ Hemangiopericytoma: A Systematic Literature Review. World Neurosurgery. 2023;170:68–83. doi: 10.1016/j.wneu.2022.11.062
- Ohba S, Murayama K, Nishiyama Y, et al. Clinical and Radiographic Features for Differentiating Solitary Fibrous Tumor/ Hemangiopericytoma From Meningioma. World Neurosurgery. 2019;130:e383–e392. doi: 10.1016/j.wneu.2019.06.094
- Meng Y, Chaohu W, Yi L, et al. Preoperative radiologic characters to predict hemangiopericytoma from angiomatous meningioma. Clinical Neurology and Neurosurgery. 2015;138:78–82. doi: 10.1016/j.clineuro.2015.08.005
- Wang C, Xu Y, Xiao X, et al. Role of intratumoral flow void signs in the differential diagnosis of intracranial solitary fibrous tumors and meningiomas. Journal of neuroradiology. 2016;43(5):325–330. doi: 10.1016/j.neurad.2016.06.003
补充文件
