磁共振成像在孕期诊断结节性硬化症中的应用:临床案例

封面图片

如何引用文章

详细

早期识别罕见病患者,如结节性硬化症,需要集体协作并引入新的孕期诊断方法,不仅依赖于超声检查,还应使用磁共振成像。关于Bourneville-Pringle病的临床表现的知识积累,以及诊断方法的改进,使得该疾病的早期发现成为可能。通过磁共振成像,能够获得高质量的大脑解剖和功能性图像,且可在不同的扫描平面上进行观察,从而显著提高该方法在早期(孕期)诊断结节性硬化症脑部表现的灵敏度和信息量。此外,进行磁共振成像还可以识别纵隔的肿块。这一事实表明,采用磁共振成像作为主要诊断手段,对结节性硬化症的诊断应采取综合性方法,评估胎儿心血管系统和中枢神经系统的状态。本文展示了一个孕期诊断结节性硬化症的临床案例,随后对新生儿进行了检查并进行了基因诊断验证。此案例的展示验证了磁共振成像在孕期诊断结节性硬化症中的诊断重要性。

作者简介

Tatiana V. Ivlyukova

Surgut District Clinical Centre of Maternity and Childhood health care

Email: ivlukova1978@mail.ru
ORCID iD: 0000-0001-5927-6392
SPIN 代码: 6454-1164
俄罗斯联邦, Surgut

Daria D. Bugrova

Surgut State University

编辑信件的主要联系方式.
Email: bugrova_dd@edu.surgu.ru
ORCID iD: 0009-0007-1304-1839
SPIN 代码: 7060-8369
俄罗斯联邦, Surgut

Alexander A. Melnikov

Petrovsky National Research Center of Surgery

Email: alexradiology@rambler.ru
ORCID iD: 0009-0008-7409-0957
SPIN 代码: 2129-3238

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Larisa D. Belotserkovtseva

Surgut District Clinical Centre of Maternity and Childhood health care; Surgut State University

Email: info@surgut-kpc.ru
ORCID iD: 0000-0001-6995-4863
SPIN 代码: 2555-8470

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Surgut; Surgut

Natalia V. Klimova

Surgut State University; Surgut Regional Clinical Hospital

Email: knv@mail.ru
ORCID iD: 0000-0003-4589-6528
SPIN 代码: 6411-0879

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Surgut; Surgut

参考

  1. Islam MP. Tuberous sclerosis complex. Seminars in Pediatric Neurology. 2021;37:100875. doi: 10.1016/j.spen.2021.100875 EDN: UZDDQC
  2. Dorofeeva MYu, Belousova ED, Pivovarova AM. Recommendations for the diagnosis and treatment of tuberous sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2014;114(3):58–74. EDN: SDIJGZ
  3. Randle SC. Tuberous sclerosis complex: a review. Pediatric Annals. 2017;46(4):e166–e171. doi: 10.3928/19382359-20170320-01
  4. Fu J, Liang P, Zheng Y, et al. A large deletion in TSC2 causes tuberous sclerosis complex by dysregulating PI3K/AKT/mTOR signaling pathway. Gene. 2024;909:148312. doi: 10.1016/j.gene.2024.148312 EDN: IVLLCF
  5. Samueli S, Abraham K, Dressler A, et al. Tuberous sclerosis complex: new criteria for diagnostic work-up and management. Wiener klinische Wochenschrift. 2015;127(15-16):619–630. doi: 10.1007/s00508-015-0758-y EDN: UOKUJL
  6. Henske EP, Jóźwiak S, Kingswood JC, et al. Tuberous sclerosis complex. Nature Reviews Disease Primers. 2016;2:16035. doi: 10.1038/nrdp.2016.35 EDN: XULGSL
  7. Morin CE, Morin NP, Franz DN, et al. Thoracoabdominal imaging of tuberous sclerosis. Pediatric Radiology. 2018;48(9):1307–1323. doi: 10.1007/s00247-018-4123-y EDN: MEEFCH
  8. Chugunova LA, Shelestova ML, Korotchenko OYe, et al. Modern aspects of antenatal ultrasound and molecular genetic diagnosis of tuberous sclerosis. Obstetrics and Gynecology. 2020;(10):141–147. doi: 10.18565/aig.2020.10.141-147 EDN: QNPZHS
  9. Sedova TG, Elkin VD, Kobernik MYu, Zhukova AA. Tuberous sclerosis: literature review and clinical case description (retrospective analysis of 15-year follow-up). Russian Journal of Clinical Dermatology and Venerology. 2021;20(1):136–144. doi: 10.17116/klinderma202120011136 EDN: HIOMLT
  10. Northrup H, Aronow M, Bebin E, et al. Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations. Pediatric Neurology. 2021;123:50–66. doi: 10.1016/j.pediatrneurol.2021.07.011 EDN: ILZBRU
  11. Wataya–Kaneda M, Uemura M, Fujita K, et al. Tuberous sclerosis complex: recent advances in manifestations and therapy. International Journal of Urology. 2017;24(9):681–691. doi: 10.1111/iju.13390 EDN: YGLIDX
  12. Manoukian SB, Kowal DJ. Comprehensive imaging manifestations of tuberous sclerosis. American Journal of Roentgenology. 2015;204(5):933–943. doi: 10.2214/AJR.13.12235
  13. Russo C, Nastro A, Cicala D, et al. Neuroimaging in tuberous sclerosis complex. Child's Nervous System. 2020;36(10):2497–2509. doi: 10.1007/s00381-020-04705-4 EDN: BHQMKK
  14. Cotter JA. An update on the central nervous system manifestations of tuberous sclerosis complex. Acta Neuropathologica. 2020;139(4):613–624. doi: 10.1007/s00401-019-02003-1 EDN: WHJEEM

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Results of fetal cardiac ultrasound in the third trimester (28 weeks and 2 days of gestation). Elongated hyperechoic masses are visualized: a, within the interventricular septum; b, in the cavity of the left ventricle.

下载 (129KB)
3. Fig. 2. Prenatal fetal chest magnetic resonance imaging in the axial plane using a T2-weighted sequence (T2 Ax CHEST). Third trimester of pregnancy (29 weeks and 4 days of gestation). Masses with signal patterns characteristic of rhabdomyoma in the left and right ventricles of the heart (white arrows).

下载 (98KB)
4. Fig. 3. Prenatal fetal brain magnetic resonance imaging in the third trimester of pregnancy (29 weeks and 4 days of gestation): a, subependymal hypointense foci on T2-weighted imaging (black arrows); b, subependymal hyperintense foci on T1-weighted imaging (white arrows).

下载 (119KB)
5. Fig. 4. Brain magnetic resonance imaging in the patient at 2 months old: a, images acquired using an inversion recovery sequence with long T1 (FLAIR). Multiple pathological foci in the periventricular and subcortical regions (white arrows); b, T2-weighted images. Subependymal nodules show low signal intensity (black arrows), indicating calcification.

下载 (185KB)

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).