Digital technologies and artificial intelligence in the diagnosis of cardiovascular complications in pregnancy: a review
- Authors: Trusov Y.A.1, Shamsueva K.T.2, Kolkhidova M.Z.2, Inderbieva A.T.2, Baryshnikova E.D.3, Khusnutdinova K.A.3, Rasponomareva A.E.4, Shabazgerieva A.R.2, Radzhabov K.K.5, Sanakoev S.A.2, Kudzieva V.K.6, Ponomareva A.V.7, Kozyreva N.K.7
-
Affiliations:
- Samara State Medical University
- North-Ossetian State Medical Academy
- The Russian National Research Medical University named after N.I. Pirogov (Pirogov University)
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
- Penza State University
- Rostov State Medical University
- Kuban State Medical University
- Issue: Vol 6, No 4 (2025)
- Pages: 603-617
- Section: Reviews
- URL: https://ogarev-online.ru/DD/article/view/373799
- DOI: https://doi.org/10.17816/DD691113
- EDN: https://elibrary.ru/RUTROV
- ID: 373799
Cite item
Full Text
Abstract
Cardiovascular diseases during pregnancy remain a leading cause of maternal morbidity and mortality worldwide. The development of digital technologies and artificial intelligence offers new opportunities to improve risk stratification, early diagnosis, and monitoring of cardiovascular complications in pregnant women. Although effective, conventional diagnostic approaches, including electrocardiography, echocardiography, and biochemical markers are often limited by sensitivity, reproducibility, and feasibility for immediate use during pregnancy. Artificial intelligence models integrating multimodal data—clinical history, imaging, laboratory values, and wearable data—demonstrate the potential to detect subclinical changes that may remain unrecognized using standard diagnostic approaches. Emerging evidence supports the effectiveness of artificial intelligence in detecting arrhythmias, diagnosing peripartum cardiomyopathy, assessing valvular heart disease, and predicting cardiovascular risk and hypertensive disorders of pregnancy, including preeclampsia. Neural network–based models have shown advantages over traditional statistical methods, achieving high predictive accuracy (with areas under the ROC curve > 0.90 in some studies). Furthermore, the use of artificial intelligence in the interpretation of medical imaging and phonocardiographic recordings may reduce inter-observer variability and enhance diagnostic efficiency. Despite these promising findings, significant challenges remain, including data quality, algorithmic bias, ethical considerations, regulatory constraints, and limited clinical validation in pregnant populations. Responsible integration of artificial intelligence into obstetric and cardiovascular practice requires interdisciplinary collaboration, rigorous validation, and transparent control.
In summary, artificial intelligence technologies possess a transformative potential for optimizing the management of pregnant women with cardiovascular disease and may contribute to reducing maternal morbidity and mortality, provided that ethical and organizational barriers are adequately addressed.
Full Text
##article.viewOnOriginalSite##About the authors
Yurii A. Trusov
Samara State Medical University
Email: yu.a.trusov@samsmu.ru
ORCID iD: 0000-0001-6407-3880
SPIN-code: 3203-5314
Russian Federation, Samara
Khadizhat T. Shamsueva
North-Ossetian State Medical Academy
Email: shamsuevakh1@gmail.com
ORCID iD: 0009-0003-7173-9072
Russian Federation, Vladikavkaz
Marianna Z. Kolkhidova
North-Ossetian State Medical Academy
Email: mari_kolxi@mail.ru
ORCID iD: 0009-0003-1301-8795
Russian Federation, Vladikavkaz
Albina T. Inderbieva
North-Ossetian State Medical Academy
Email: dr.inderbieva@mail.ru
ORCID iD: 0009-0007-8620-4790
Russian Federation, Vladikavkaz
Elizaveta D. Baryshnikova
The Russian National Research Medical University named after N.I. Pirogov (Pirogov University)
Email: mazhirinal2013@yandex.ru
ORCID iD: 0009-0007-6066-9354
Russian Federation, Moscow
Kamilya A. Khusnutdinova
The Russian National Research Medical University named after N.I. Pirogov (Pirogov University)
Email: Khusnutdinova.k@mail.ru
ORCID iD: 0009-0004-7935-9477
Russian Federation, Moscow
Aleksandra E. Rasponomareva
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Author for correspondence.
Email: aleksandrarasp@mail.ru
ORCID iD: 0009-0008-3382-1493
Russian Federation, Krasnoyarsk
Alina R. Shabazgerieva
North-Ossetian State Medical Academy
Email: alyashabazgerieva@gmail.com
ORCID iD: 0009-0003-5687-7098
Russian Federation, Vladikavkaz
Khadzhimurad K. Radzhabov
Penza State University
Email: khadzhimurad.radzhabov@mail.ru
ORCID iD: 0009-0004-3169-951X
Russian Federation, Penza
Stanislav A. Sanakoev
North-Ossetian State Medical Academy
Email: stas.sanakoev-2018@mail.ru
ORCID iD: 0009-0003-1058-9226
Russian Federation, Vladikavkaz
Valeria Kh. Kudzieva
Rostov State Medical University
Email: kudzievavaleria@mail.ru
ORCID iD: 0009-0006-6371-6112
Russian Federation, Rostov-on-Don
Alina V. Ponomareva
Kuban State Medical University
Email: alipon4@yandex.ru
ORCID iD: 0009-0004-3936-7982
Russian Federation, Krasnodar
Natalia K. Kozyreva
Kuban State Medical University
Email: Nata05042004@yandex.ru
ORCID iD: 0009-0003-1517-0539
Russian Federation, Krasnodar
References
- ESC Guidelines for themanagement of cardiovascular diseases during pregnancy. Russian Journal of Cardiology. 2019;24(6):151–228. doi: 10.15829/1560-4071-2019-6-151-228 EDN: TDBQET
- Shigabutdinova TN, Gabidullina RI, Imangulova LI, et al. Cardiovascular diseases during pregnancy in the cardioscreening program. Obstetrics and gynecology: News, Opinions, Training. 2025;13(1):66–71. doi: 10.33029/2303-9698-2025-13-1-66-71 EDN: CIIPFP
- Rudaeva EV, Mozes VG, Kashtalap VV, et al. Congenital heart disease and pregnancy. Fundamental and Clinical Medicine. 2019;4(3):102–112. doi: 10.23946/2500-0764-2019-4-3-102-112 EDN: EAKKTS
- Baranovskaya EI. Maternal mortality in modern world. Obstetrics, Gynecology and Reproduction. 2022;16(3):296–305. doi: 10.17749/2313-7347/ob.gyn.rep.2022.279 EDN: VZUXCE
- Sliwa K, Petrie MC, van der Meer P, et al. Clinical presentation, management, and 6-month outcomes in women with peripartum cardiomyopathy: an ESC EORP registry. European Heart Journal. 2020;41(39):3787–3797. doi: 10.1093/eurheartj/ehaa455 EDN: XYUFMX
- Diguisto C, Choinier PM, Saucedo M, et al. Timing and preventability of cardiovascular-related maternal death. Obstetrics & Gynecology. 2023;141(6):1190–1198. doi: 10.1097/AOG.0000000000005176 EDN: WJTKXO
- Shara N, Mirabal-Beltran R, Talmadge B, et al. Use of machine learning for early detection of maternal cardiovascular conditions: retrospective study using electronic health record data. JMIR Cardio. 2024;8:e53091. doi: 10.2196/53091 EDN: OMSPFI
- Zahid S, Jha S, Kaur G, et al. PARCCS. JACC: Advances. 2024;3(8):101095. doi: 10.1016/j.jacadv.2024.101095 EDN: ETPOAQ
- Roos-Hesselink J, Baris L, Johnson M, et al. Pregnancy outcomes in women with cardiovascular disease: evolving trends over 10 years in the ESC Registry of Pregnancy and Cardiac disease (ROPAC). European Heart Journal. 2019;40(47):3848–3855. doi: 10.1093/eurheartj/ehz136 EDN: CILAFV
- Silversides CK, Grewal J, Mason J, et al. Pregnancy outcomes in women with heart disease. Journal of the American College of Cardiology. 2018;71(21):2419–2430. doi: 10.1016/j.jacc.2018.02.076 EDN: VHZMVL
- Siu SC, Sermer M, Colman JM, et al; on behalf of the Cardiac Disease in Pregnancy (CARPREG) Investigators. Prospective multicenter study of pregnancy outcomes in women with heart disease. Circulation. 2001;104(5):515–521. doi: 10.1161/hc3001.093437
- Drenthen W, Boersma E, Balci A, et al; On behalf of the ZAHARA Investigators. Predictors of pregnancy complications in women with congenital heart disease. European Heart Journal. 2010;31(17):2124–2132. doi: 10.1093/eurheartj/ehq200
- Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Kardiologia Polska. 2019;77(3):245–326. doi: 10.5603/KP.2019.0049
- Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine. 2019;25(1):65–69. doi: 10.1038/s41591-018-0268-3 EDN: UPBXPK
- Stehlik J, Schmalfuss C, Bozkurt B, et al. Continuous wearable monitoring analytics predict heart failure hospitalization. Circulation: Heart Failure. 2020;13(3):e006513. doi: 10.1161/CIRCHEARTFAILURE.119.006513 EDN: GLATSO
- Vaidya VR, Arora S, Patel N, et al. Burden of arrhythmia in pregnancy. Circulation. 2017;135(6):619–621. doi: 10.1161/CIRCULATIONAHA.116.026681
- Kashou AH, Noseworthy PA, Beckman TJ, et al. ECG interpretation proficiency of healthcare professionals. Current Problems in Cardiology. 2023;48(10):101924. doi: 10.1016/j.cpcardiol.2023.101924 EDN: TWVGWN
- Raghunath S, Pfeifer JM, Ulloa-Cerna AE, et al. Deep neural networks can predict new-onset atrial fibrillation from the 12-lead ECG and help identify those at risk of atrial fibrillation-related stroke. Circulation. 2021;143(13):1287–1298. doi: 10.1161/CIRCULATIONAHA EDN: OTIPBV
- Ribeiro AH, Ribeiro MH, Paixão GMM, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nature Communications. 2020;11(1):1760. doi: 10.1038/s41467-020-15432-4
- Singh JP, Fontanarava J, de Massé G, et al. Short-term prediction of atrial fibrillation from ambulatory monitoring ECG using a deep neural network. European Heart Journal - Digital Health. 2022;3(2):208–217. doi: 10.1093/ehjdh/ztac014 EDN: ZGCIBU
- Gadaleta M, Harrington P, Barnhill E, et al. Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias. NPJ Digital Medicine. 2023;6(1):229. doi: 10.1038/s41746-023-00966-w EDN: SFKVYU
- Liang H, Zhang H, Wang J, et al. The Application of artificial intelligence in atrial fibrillation patients: from detection to treatment. Reviews in Cardiovascular Medicine. 2024;25(7):257. doi: 10.31083/j.rcm2507257 EDN: SSWGQO
- Perez MV, Mahaffey KW, Hedlin H, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. New England Journal of Medicine. 2019;381(20):1909–1917. doi: 10.1056/NEJMoa1901183
- Shperling MI, Mols AA, Kosulina VM, et al. Gender-specific characteristics of heart failure with preserved ejection fraction in women: focus on pregnancy factors. Cardiovascular Therapy and Prevention. 2024;23(8):4006. doi: 10.15829/1728-88002024-4006 EDN: EEKFMJ
- Panchuk YP, Yaroslavtsev MY, Polonnikova AA, et al. Peripartal cardiomyopathy: literature review and clinical case description. Bulletin of the Medical Institute “REAVIZ” (Rehabilitation, Doctor and Health). 2024;14(3):89–95. doi: 10.20340/vmi-rvz.2024.3.CASE.2 EDN: PNEJSU
- Chulkov VS, Syundyukova EG, Chulkov VS, et al. Hypertensive disorders during pregnancy and risk of cardiovascular disease. Russian Journal of Preventive Medicine. 2021;24(12):97–104. doi: 10.17116/profmed20212412197 EDN: XLTUBJ
- Yurista S, Wadhera P, Eder RA, et al. Peripartum HFpEF. JACC: Advances. 2024;3(2):100799. doi: 10.1016/j.jacadv.2023.100799 EDN: JMKIMP
- Hodgson NR, Lindor RA, Monas J, et al. Pregnancy-related heart disease in the emergency department. Journal of Personalized Medicine. 2025;15(4):148. doi: 10.3390/jpm15040148
- Adedinsewo DA, Johnson PW, Douglass EJ, et al. Detecting cardiomyopathies in pregnancy and the postpartum period with an electrocardiogram-based deep learning model. European Heart Journal - Digital Health. 2021;2(4):586–596. doi: 10.1093/ehjdh/ztab078 EDN: TFSPPX
- Lee Y, Choi B, Lee MS, et al. An artificial intelligence electrocardiogram analysis for detecting cardiomyopathy in the peripartum period. International Journal of Cardiology. 2022;352:72–77. doi: 10.1016/j.ijcard.2022.01.064 EDN: HGEJZV
- Jung YM, Kang S, Son JM, et al. Electrocardiogram-based deep learning model to screen peripartum cardiomyopathy. American Journal of Obstetrics & Gynecology MFM. 2023;5(12):101184. doi: 10.1016/j.ajogmf.2023.101184 EDN: FJEPHZ
- Karabayir I, Wilkie G, Celik T, et al. Development and validation of an electrocardiographic artificial intelligence model for detection of peripartum cardiomyopathy. American Journal of Obstetrics & Gynecology MFM. 2024;6(4):101337. doi: 10.1016/j.ajogmf.2024.101337 EDN: HVLVST
- Adedinsewo DA, Morales-Lara AC, Hardway H, et al. Artificial intelligence–based screening for cardiomyopathy in an obstetric population: A pilot study. Cardiovascular Digital Health Journal. 2024;5(3):132–140. doi: 10.1016/j.cvdhj.2024.03.005 EDN: HMJUIY
- Adedinsewo DA, Morales-Lara AC, Afolabi BB, et al; on behalf of the SPEC-AI Nigeria Investigators. Artificial intelligence guided screening for cardiomyopathies in an obstetric population: a pragmatic randomized clinical trial. Nature Medicine. 2024;30(10):2897–2906. doi: 10.1038/s41591-024-03243-9 EDN: VUKAWP
- Chen QF, Shi S, Wang YF, et al. Global, regional, and national burden of valvular heart disease, 1990 to 2021. Journal of the American Heart Association. 2024;13(24):e037991. doi: 10.1161/JAHA.124.037991 EDN: TMTEIO
- Kovelkova MN, Iakovleva EG. Artificial intelligence in the prevention and diagnosis of cardiovascular diseases in Russia (literature review). Siberian Journal of Clinical and Experimental Medicine. 2025;40(1):28–41. doi: 10.29001/2073-8552-2025-40-1-28-41 EDN: ZKPMNP
- Holste G, Oikonomou EK, Mortazavi BJ, et al. Severe aortic stenosis detection by deep learning applied to echocardiography. European Heart Journal. 2023;44(43):4592–4604. doi: 10.1093/eurheartj/ehad456 EDN: UNRTZX
- Miao F, Wen B, Hu Z, et al. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques. Artificial Intelligence in Medicine. 2020;108:101919. doi: 10.1016/j.artmed.2020.101919 EDN: TQNVQE
- Angelaki E, Barmparis GD, Fragkiadakis K, et al. Diagnostic performance of single-lead electrocardiograms for arterial hypertension diagnosis: a machine learning approach. Journal of Human Hypertension. 2024;39(1):58–65. doi: 10.1038/s41371-024-00969-4 EDN: APNREL
- Hu Y, Huerta J, Cordella N, et al. Personalized hypertension treatment recommendations by a data-driven model. BMC Medical Informatics and Decision Making. 2023;23(1):44. doi: 10.1186/s12911-023-02137-z EDN: GTLZBJ
- Hae H, Kang SJ, Kim TO, et al. Machine learning-based prediction of post-treatment ambulatory blood pressure in patients with hypertension. Blood Pressure. 2023;32(1):2209674. doi: 10.1080/08037051.2023.2209674 EDN: CTXFYQ
- Butler L, Gunturkun F, Chinthala L, et al. AI-based preeclampsia detection and prediction with electrocardiogram data. Frontiers in Cardiovascular Medicine. 2024;11:1360238. doi: 10.3389/fcvm.2024.1360238 EDN: OGAMVC
- Angeli F, Angeli E, Verdecchia P. Electrocardiographic changes in hypertensive disorders of pregnancy. Hypertension Research. 2014;37(11):973–975. doi: 10.1038/hr.2014.128
- Raffaelli R, Antonia Prioli M, Parissone F, et al. Pre-eclampsia: evidence of altered ventricular repolarization by standard ECG parameters and QT dispersion. Hypertension Research. 2014;37(11):984–988. doi: 10.1038/hr.2014.102
- Gil MM, Cuenca-Gómez D, Rolle V, et al. Validation of machine-learning model for first-trimester prediction of pre-eclampsia using cohort from PREVAL study. Ultrasound in Obstetrics & Gynecology. 2024;63(1):68–74. doi: 10.1002/uog.27478 EDN: GMWZRJ
- O’Kelly AC, Ludmir J, Wood MJ. Acute Coronary Syndrome in Pregnancy and the Post-Partum Period. Journal of Cardiovascular Development and Disease. 2022;9(7):198. doi: 10.3390/jcdd9070198 EDN: NNVWGK
- Nedbaeva DN, Aseeva AS, Zhiduleva EV, et al. Clinical features of acute coronary syndrome associated with spontaneous coronary artery dissection in women: a case series. Russian Journal of Cardiology. 2024;29(3S):62–69. doi: 10.15829/1560-4071-2024-5982 EDN: NBTKTE
- Hayes SN, Kim ESH, Saw J, et al. Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American Heart Association. Circulation. 2018;137(19):523–557. doi: 10.1161/CIR.0000000000000564
- Sheikh AS, O'Sullivan M. Pregnancy-related spontaneous coronary artery dissection: Two case reports and a comprehensive review of literature. Heart Views. 2012;13(2):53. doi: 10.4103/1995-705X.99229
- Jackson R, Al-Hussaini A, Joseph S, et al. Spontaneous coronary artery dissection. JACC: Cardiovascular Imaging. 2019;12(12):2475–2488. doi: 10.1016/j.jcmg.2019.01.015
- Chae J, Kweon J, Park GM, et al. Enhancing quantitative coronary angiography (QCA) with advanced artificial intelligence: comparison with manual QCA and visual estimation. The International Journal of Cardiovascular Imaging. 2025;41(3):559–568. doi: 10.1007/s10554-025-03342-9 EDN: JUCBJZ
- Kim Y, Yoon HJ, Suh J, et al. Artificial Intelligence–Based Fully Automated Quantitative Coronary Angiography vs Optical Coherence Tomography–Guided PCI. JACC: Cardiovascular Interventions. 2025;18(2):187–197. doi: 10.1016/j.jcin.2024.10.025 EDN: RQQPEO
- Krittanawong C, Virk HUH, Kumar A, et al. Machine learning and deep learning to predict mortality in patients with spontaneous coronary artery dissection. Scientific Reports. 2021;11(1):8992. doi: 10.1038/s41598-021-88172-0 EDN: PBXRYP
- Ma R, Gao H, Cui J, et al. Pregnancy feasibility in women with mild pulmonary arterial hypertension: a systematic review and meta-analysis. BMC Pregnancy and Childbirth. 2023;23(1):427. doi: 10.1186/s12884-023-05752-w EDN: REWRBO
- Elgendi M, Bobhate P, Jain S, et al. The voice of the heart: vowel-like sound in pulmonary artery hypertension. Diseases. 2018;6(2):26. doi: 10.3390/diseases6020026
- Kwon J, Kim KH, Medina-Inojosa J, et al. Artificial intelligence for early prediction of pulmonary hypertension using electrocardiography. The Journal of Heart and Lung Transplantation. 2020;39(8):805–814. doi: 10.1016/j.healun.2020.04.009 EDN: PTEVKR
- Liao Z, Liu K, Ding S, et al. Automatic echocardiographic evaluation of the probability of pulmonary hypertension using machine learning. Pulmonary Circulation. 2023;13(3):e12272. doi: 10.1002/pul2.12272 EDN: OUOPMO
- Imai S, Sakao S, Nagata J, et al. Artificial intelligence-based model for predicting pulmonary arterial hypertension on chest x-ray images. BMC Pulmonary Medicine. 2024;24(1):101. doi: 10.1186/s12890-024-02891-4 EDN: SENDZY
- Celi LA, Cellini J, Charpignon ML, et al; for MIT Critical Data. Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review. PLOS Digital Health. 2022;1(3):e0000022. doi: 10.1371/journal.pdig.0000022 EDN: FFUSAN
- He B, Kwan AC, Cho JH, et al. Blinded, randomized trial of sonographer versus AI cardiac function assessment. Nature. 2023;616(7957):520–524. doi: 10.1038/s41586-023-05947-3 EDN: BJAAZQ
- Moradi A, Olanisa OO, Nzeako T, et al. Revolutionizing cardiac imaging: a scoping review of artificial intelligence in echocardiography, CTA, and cardiac MRI. Journal of Imaging. 2024;10(8):193. doi: 10.3390/jimaging10080193 EDN: XWHBRA
- Fu W, Li R. Diagnostic performance of a wearing dynamic ECG recorder for atrial fibrillation screening: the HUAMI heart study. BMC Cardiovascular Disorders. 2021;21(1):558. doi: 10.1186/s12872-021-02363-1 EDN: QKSYGD
Supplementary files

