数字技术与人工智能在妊娠期心血管并发症诊断中的应用:综述

封面

如何引用文章

全文:

详细

妊娠期心血管疾病仍然是全球范围内孕产妇发病率和死亡率的主要原因之一。数字技术与人工智能的发展为妊娠期心血管并发症的风险分层、早期诊断及监测提供了新的可能性。尽管心电图、超声心动图及生物化学标志物等传统方法具有一定的有效性,但在妊娠条件下,其敏感性、可重复性及及时应用能力仍受到限制。人工智能模型通过整合多模态数据——包括临床病史、影像学资料、实验室指标及可穿戴设备数据——显示出识别亚临床心血管改变的潜力,而这些改变在常规诊断中可能被忽视。现有研究表明,人工智能在心血管并发症风险预测、心律失常识别、围产期心肌病诊断、瓣膜性心脏病评估以及妊娠期高血压疾病,包括子痫前期,的预测方面具有应用前景。神经网络模型在多项研究中显示出优于传统统计模型的预测性能,在部分研究中其预测准确性达到较高水平(ROC曲线下面积AUC> 0.90)。此外,人工智能在医学影像及心音图解读中的应用,有助于降低观察者间差异并提高诊断效率。尽管研究结果令人鼓舞,但人工智能在该领域的临床应用仍面临若干问题,包括数据质量与代表性不足、算法偏倚、伦理与监管问题,以及在孕妇人群中临床验证证据有限等。人工智能在产科—心脏病学实践中的应用,需要多学科协作、严格验证及透明的治理体系。

综上所述,人工智能技术在优化妊娠期合并心血管疾病孕妇的管理方面具有重要潜力,在克服伦理和组织层面障碍的前提下,可能有助于降低孕产妇发病率和死亡率。

作者简介

Yurii A. Trusov

Samara State Medical University

Email: yu.a.trusov@samsmu.ru
ORCID iD: 0000-0001-6407-3880
SPIN 代码: 3203-5314
俄罗斯联邦, Samara

Khadizhat T. Shamsueva

North-Ossetian State Medical Academy

Email: shamsuevakh1@gmail.com
ORCID iD: 0009-0003-7173-9072
俄罗斯联邦, Vladikavkaz

Marianna Z. Kolkhidova

North-Ossetian State Medical Academy

Email: mari_kolxi@mail.ru
ORCID iD: 0009-0003-1301-8795
俄罗斯联邦, Vladikavkaz

Albina T. Inderbieva

North-Ossetian State Medical Academy

Email: dr.inderbieva@mail.ru
ORCID iD: 0009-0007-8620-4790
俄罗斯联邦, Vladikavkaz

Elizaveta D. Baryshnikova

The Russian National Research Medical University named after N.I. Pirogov (Pirogov University)

Email: mazhirinal2013@yandex.ru
ORCID iD: 0009-0007-6066-9354
俄罗斯联邦, Moscow

Kamilya A. Khusnutdinova

The Russian National Research Medical University named after N.I. Pirogov (Pirogov University)

Email: Khusnutdinova.k@mail.ru
ORCID iD: 0009-0004-7935-9477
俄罗斯联邦, Moscow

Aleksandra E. Rasponomareva

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

编辑信件的主要联系方式.
Email: aleksandrarasp@mail.ru
ORCID iD: 0009-0008-3382-1493
俄罗斯联邦, Krasnoyarsk

Alina R. Shabazgerieva

North-Ossetian State Medical Academy

Email: alyashabazgerieva@gmail.com
ORCID iD: 0009-0003-5687-7098
俄罗斯联邦, Vladikavkaz

Khadzhimurad K. Radzhabov

Penza State University

Email: khadzhimurad.radzhabov@mail.ru
ORCID iD: 0009-0004-3169-951X
俄罗斯联邦, Penza

Stanislav A. Sanakoev

North-Ossetian State Medical Academy

Email: stas.sanakoev-2018@mail.ru
ORCID iD: 0009-0003-1058-9226
俄罗斯联邦, Vladikavkaz

Valeria Kh. Kudzieva

Rostov State Medical University

Email: kudzievavaleria@mail.ru
ORCID iD: 0009-0006-6371-6112
俄罗斯联邦, Rostov-on-Don

Alina V. Ponomareva

Kuban State Medical University

Email: alipon4@yandex.ru
ORCID iD: 0009-0004-3936-7982
俄罗斯联邦, Krasnodar

Natalia K. Kozyreva

Kuban State Medical University

Email: Nata05042004@yandex.ru
ORCID iD: 0009-0003-1517-0539
俄罗斯联邦, Krasnodar

参考

  1. 2018 ESC Guidelines for themanagement of cardiovascular diseases during pregnancy. Russian Journal of Cardiology. 2019;24(6):151–228. doi: 10.15829/1560-4071-2019-6-151-228 EDN: TDBQET
  2. Shigabutdinova TN, Gabidullina RI, Imangulova LI, et al. Cardiovascular diseases during pregnancy in the cardioscreening program. Obstetrics and gynecology: News, Opinions, Training. 2025;13(1):66–71. doi: 10.33029/2303-9698-2025-13-1-66-71 EDN: CIIPFP
  3. Rudaeva EV, Mozes VG, Kashtalap VV, et al. Congenital heart disease and pregnancy. Fundamental and Clinical Medicine. 2019;4(3):102–112. doi: 10.23946/2500-0764-2019-4-3-102-112 EDN: EAKKTS
  4. Baranovskaya EI. Maternal mortality in modern world. Obstetrics, Gynecology and Reproduction. 2022;16(3):296–305. doi: 10.17749/2313-7347/ob.gyn.rep.2022.279 EDN: VZUXCE
  5. Sliwa K, Petrie MC, van der Meer P, et al. Clinical presentation, management, and 6-month outcomes in women with peripartum cardiomyopathy: an ESC EORP registry. European Heart Journal. 2020;41(39):3787–3797. doi: 10.1093/eurheartj/ehaa455 EDN: XYUFMX
  6. Diguisto C, Choinier PM, Saucedo M, et al. Timing and preventability of cardiovascular-related maternal death. Obstetrics & Gynecology. 2023;141(6):1190–1198. doi: 10.1097/AOG.0000000000005176 EDN: WJTKXO
  7. Shara N, Mirabal-Beltran R, Talmadge B, et al. Use of machine learning for early detection of maternal cardiovascular conditions: retrospective study using electronic health record data. JMIR Cardio. 2024;8:e53091. doi: 10.2196/53091 EDN: OMSPFI
  8. Zahid S, Jha S, Kaur G, et al. PARCCS. JACC: Advances. 2024;3(8):101095. doi: 10.1016/j.jacadv.2024.101095 EDN: ETPOAQ
  9. Roos-Hesselink J, Baris L, Johnson M, et al. Pregnancy outcomes in women with cardiovascular disease: evolving trends over 10 years in the ESC Registry of Pregnancy and Cardiac disease (ROPAC). European Heart Journal. 2019;40(47):3848–3855. doi: 10.1093/eurheartj/ehz136 EDN: CILAFV
  10. Silversides CK, Grewal J, Mason J, et al. Pregnancy outcomes in women with heart disease. Journal of the American College of Cardiology. 2018;71(21):2419–2430. doi: 10.1016/j.jacc.2018.02.076 EDN: VHZMVL
  11. Siu SC, Sermer M, Colman JM, et al; on behalf of the Cardiac Disease in Pregnancy (CARPREG) Investigators. Prospective multicenter study of pregnancy outcomes in women with heart disease. Circulation. 2001;104(5):515–521. doi: 10.1161/hc3001.093437
  12. Drenthen W, Boersma E, Balci A, et al; On behalf of the ZAHARA Investigators. Predictors of pregnancy complications in women with congenital heart disease. European Heart Journal. 2010;31(17):2124–2132. doi: 10.1093/eurheartj/ehq200
  13. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Kardiologia Polska. 2019;77(3):245–326. doi: 10.5603/KP.2019.0049
  14. Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine. 2019;25(1):65–69. doi: 10.1038/s41591-018-0268-3 EDN: UPBXPK
  15. Stehlik J, Schmalfuss C, Bozkurt B, et al. Continuous wearable monitoring analytics predict heart failure hospitalization. Circulation: Heart Failure. 2020;13(3):e006513. doi: 10.1161/CIRCHEARTFAILURE.119.006513 EDN: GLATSO
  16. Vaidya VR, Arora S, Patel N, et al. Burden of arrhythmia in pregnancy. Circulation. 2017;135(6):619–621. doi: 10.1161/CIRCULATIONAHA.116.026681
  17. Kashou AH, Noseworthy PA, Beckman TJ, et al. ECG interpretation proficiency of healthcare professionals. Current Problems in Cardiology. 2023;48(10):101924. doi: 10.1016/j.cpcardiol.2023.101924 EDN: TWVGWN
  18. Raghunath S, Pfeifer JM, Ulloa-Cerna AE, et al. Deep neural networks can predict new-onset atrial fibrillation from the 12-lead ECG and help identify those at risk of atrial fibrillation-related stroke. Circulation. 2021;143(13):1287–1298. doi: 10.1161/CIRCULATIONAHA EDN: OTIPBV
  19. Ribeiro AH, Ribeiro MH, Paixão GMM, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nature Communications. 2020;11(1):1760. doi: 10.1038/s41467-020-15432-4
  20. Singh JP, Fontanarava J, de Massé G, et al. Short-term prediction of atrial fibrillation from ambulatory monitoring ECG using a deep neural network. European Heart Journal - Digital Health. 2022;3(2):208–217. doi: 10.1093/ehjdh/ztac014 EDN: ZGCIBU
  21. Gadaleta M, Harrington P, Barnhill E, et al. Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias. NPJ Digital Medicine. 2023;6(1):229. doi: 10.1038/s41746-023-00966-w EDN: SFKVYU
  22. Liang H, Zhang H, Wang J, et al. The Application of artificial intelligence in atrial fibrillation patients: from detection to treatment. Reviews in Cardiovascular Medicine. 2024;25(7):257. doi: 10.31083/j.rcm2507257 EDN: SSWGQO
  23. Perez MV, Mahaffey KW, Hedlin H, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. New England Journal of Medicine. 2019;381(20):1909–1917. doi: 10.1056/NEJMoa1901183
  24. Shperling MI, Mols AA, Kosulina VM, et al. Gender-specific characteristics of heart failure with preserved ejection fraction in women: focus on pregnancy factors. Cardiovascular Therapy and Prevention. 2024;23(8):4006. doi: 10.15829/1728-88002024-4006 EDN: EEKFMJ
  25. Panchuk YP, Yaroslavtsev MY, Polonnikova AA, et al. Peripartal cardiomyopathy: literature review and clinical case description. Bulletin of the Medical Institute “REAVIZ” (Rehabilitation, Doctor and Health). 2024;14(3):89–95. doi: 10.20340/vmi-rvz.2024.3.CASE.2 EDN: PNEJSU
  26. Chulkov VS, Syundyukova EG, Chulkov VS, et al. Hypertensive disorders during pregnancy and risk of cardiovascular disease. Russian Journal of Preventive Medicine. 2021;24(12):97–104. doi: 10.17116/profmed20212412197 EDN: XLTUBJ
  27. Yurista S, Wadhera P, Eder RA, et al. Peripartum HFpEF. JACC: Advances. 2024;3(2):100799. doi: 10.1016/j.jacadv.2023.100799 EDN: JMKIMP
  28. Hodgson NR, Lindor RA, Monas J, et al. Pregnancy-related heart disease in the emergency department. Journal of Personalized Medicine. 2025;15(4):148. doi: 10.3390/jpm15040148
  29. Adedinsewo DA, Johnson PW, Douglass EJ, et al. Detecting cardiomyopathies in pregnancy and the postpartum period with an electrocardiogram-based deep learning model. European Heart Journal - Digital Health. 2021;2(4):586–596. doi: 10.1093/ehjdh/ztab078 EDN: TFSPPX
  30. Lee Y, Choi B, Lee MS, et al. An artificial intelligence electrocardiogram analysis for detecting cardiomyopathy in the peripartum period. International Journal of Cardiology. 2022;352:72–77. doi: 10.1016/j.ijcard.2022.01.064 EDN: HGEJZV
  31. Jung YM, Kang S, Son JM, et al. Electrocardiogram-based deep learning model to screen peripartum cardiomyopathy. American Journal of Obstetrics & Gynecology MFM. 2023;5(12):101184. doi: 10.1016/j.ajogmf.2023.101184 EDN: FJEPHZ
  32. Karabayir I, Wilkie G, Celik T, et al. Development and validation of an electrocardiographic artificial intelligence model for detection of peripartum cardiomyopathy. American Journal of Obstetrics & Gynecology MFM. 2024;6(4):101337. doi: 10.1016/j.ajogmf.2024.101337 EDN: HVLVST
  33. Adedinsewo DA, Morales-Lara AC, Hardway H, et al. Artificial intelligence–based screening for cardiomyopathy in an obstetric population: A pilot study. Cardiovascular Digital Health Journal. 2024;5(3):132–140. doi: 10.1016/j.cvdhj.2024.03.005 EDN: HMJUIY
  34. Adedinsewo DA, Morales-Lara AC, Afolabi BB, et al; on behalf of the SPEC-AI Nigeria Investigators. Artificial intelligence guided screening for cardiomyopathies in an obstetric population: a pragmatic randomized clinical trial. Nature Medicine. 2024;30(10):2897–2906. doi: 10.1038/s41591-024-03243-9 EDN: VUKAWP
  35. Chen QF, Shi S, Wang YF, et al. Global, regional, and national burden of valvular heart disease, 1990 to 2021. Journal of the American Heart Association. 2024;13(24):e037991. doi: 10.1161/JAHA.124.037991 EDN: TMTEIO
  36. Kovelkova MN, Iakovleva EG. Artificial intelligence in the prevention and diagnosis of cardiovascular diseases in Russia (literature review). Siberian Journal of Clinical and Experimental Medicine. 2025;40(1):28–41. doi: 10.29001/2073-8552-2025-40-1-28-41 EDN: ZKPMNP
  37. Holste G, Oikonomou EK, Mortazavi BJ, et al. Severe aortic stenosis detection by deep learning applied to echocardiography. European Heart Journal. 2023;44(43):4592–4604. doi: 10.1093/eurheartj/ehad456 EDN: UNRTZX
  38. Miao F, Wen B, Hu Z, et al. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques. Artificial Intelligence in Medicine. 2020;108:101919. doi: 10.1016/j.artmed.2020.101919 EDN: TQNVQE
  39. Angelaki E, Barmparis GD, Fragkiadakis K, et al. Diagnostic performance of single-lead electrocardiograms for arterial hypertension diagnosis: a machine learning approach. Journal of Human Hypertension. 2024;39(1):58–65. doi: 10.1038/s41371-024-00969-4 EDN: APNREL
  40. Hu Y, Huerta J, Cordella N, et al. Personalized hypertension treatment recommendations by a data-driven model. BMC Medical Informatics and Decision Making. 2023;23(1):44. doi: 10.1186/s12911-023-02137-z EDN: GTLZBJ
  41. Hae H, Kang SJ, Kim TO, et al. Machine learning-based prediction of post-treatment ambulatory blood pressure in patients with hypertension. Blood Pressure. 2023;32(1):2209674. doi: 10.1080/08037051.2023.2209674 EDN: CTXFYQ
  42. Butler L, Gunturkun F, Chinthala L, et al. AI-based preeclampsia detection and prediction with electrocardiogram data. Frontiers in Cardiovascular Medicine. 2024;11:1360238. doi: 10.3389/fcvm.2024.1360238 EDN: OGAMVC
  43. Angeli F, Angeli E, Verdecchia P. Electrocardiographic changes in hypertensive disorders of pregnancy. Hypertension Research. 2014;37(11):973–975. doi: 10.1038/hr.2014.128
  44. Raffaelli R, Antonia Prioli M, Parissone F, et al. Pre-eclampsia: evidence of altered ventricular repolarization by standard ECG parameters and QT dispersion. Hypertension Research. 2014;37(11):984–988. doi: 10.1038/hr.2014.102
  45. Gil MM, Cuenca-Gómez D, Rolle V, et al. Validation of machine-learning model for first-trimester prediction of pre-eclampsia using cohort from PREVAL study. Ultrasound in Obstetrics & Gynecology. 2024;63(1):68–74. doi: 10.1002/uog.27478 EDN: GMWZRJ
  46. O’Kelly AC, Ludmir J, Wood MJ. Acute Coronary Syndrome in Pregnancy and the Post-Partum Period. Journal of Cardiovascular Development and Disease. 2022;9(7):198. doi: 10.3390/jcdd9070198 EDN: NNVWGK
  47. Nedbaeva DN, Aseeva AS, Zhiduleva EV, et al. Clinical features of acute coronary syndrome associated with spontaneous coronary artery dissection in women: a case series. Russian Journal of Cardiology. 2024;29(3S):62–69. doi: 10.15829/1560-4071-2024-5982 EDN: NBTKTE
  48. Hayes SN, Kim ESH, Saw J, et al. Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American Heart Association. Circulation. 2018;137(19):523–557. doi: 10.1161/CIR.0000000000000564
  49. Sheikh AS, O'Sullivan M. Pregnancy-related spontaneous coronary artery dissection: Two case reports and a comprehensive review of literature. Heart Views. 2012;13(2):53. doi: 10.4103/1995-705X.99229
  50. Jackson R, Al-Hussaini A, Joseph S, et al. Spontaneous coronary artery dissection. JACC: Cardiovascular Imaging. 2019;12(12):2475–2488. doi: 10.1016/j.jcmg.2019.01.015
  51. Chae J, Kweon J, Park GM, et al. Enhancing quantitative coronary angiography (QCA) with advanced artificial intelligence: comparison with manual QCA and visual estimation. The International Journal of Cardiovascular Imaging. 2025;41(3):559–568. doi: 10.1007/s10554-025-03342-9 EDN: JUCBJZ
  52. Kim Y, Yoon HJ, Suh J, et al. Artificial Intelligence–Based Fully Automated Quantitative Coronary Angiography vs Optical Coherence Tomography–Guided PCI. JACC: Cardiovascular Interventions. 2025;18(2):187–197. doi: 10.1016/j.jcin.2024.10.025 EDN: RQQPEO
  53. Krittanawong C, Virk HUH, Kumar A, et al. Machine learning and deep learning to predict mortality in patients with spontaneous coronary artery dissection. Scientific Reports. 2021;11(1):8992. doi: 10.1038/s41598-021-88172-0 EDN: PBXRYP
  54. Ma R, Gao H, Cui J, et al. Pregnancy feasibility in women with mild pulmonary arterial hypertension: a systematic review and meta-analysis. BMC Pregnancy and Childbirth. 2023;23(1):427. doi: 10.1186/s12884-023-05752-w EDN: REWRBO
  55. Elgendi M, Bobhate P, Jain S, et al. The voice of the heart: vowel-like sound in pulmonary artery hypertension. Diseases. 2018;6(2):26. doi: 10.3390/diseases6020026
  56. Kwon J, Kim KH, Medina-Inojosa J, et al. Artificial intelligence for early prediction of pulmonary hypertension using electrocardiography. The Journal of Heart and Lung Transplantation. 2020;39(8):805–814. doi: 10.1016/j.healun.2020.04.009 EDN: PTEVKR
  57. Liao Z, Liu K, Ding S, et al. Automatic echocardiographic evaluation of the probability of pulmonary hypertension using machine learning. Pulmonary Circulation. 2023;13(3):e12272. doi: 10.1002/pul2.12272 EDN: OUOPMO
  58. Imai S, Sakao S, Nagata J, et al. Artificial intelligence-based model for predicting pulmonary arterial hypertension on chest x-ray images. BMC Pulmonary Medicine. 2024;24(1):101. doi: 10.1186/s12890-024-02891-4 EDN: SENDZY
  59. Celi LA, Cellini J, Charpignon ML, et al; for MIT Critical Data. Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review. PLOS Digital Health. 2022;1(3):e0000022. doi: 10.1371/journal.pdig.0000022 EDN: FFUSAN
  60. He B, Kwan AC, Cho JH, et al. Blinded, randomized trial of sonographer versus AI cardiac function assessment. Nature. 2023;616(7957):520–524. doi: 10.1038/s41586-023-05947-3 EDN: BJAAZQ
  61. Moradi A, Olanisa OO, Nzeako T, et al. Revolutionizing cardiac imaging: a scoping review of artificial intelligence in echocardiography, CTA, and cardiac MRI. Journal of Imaging. 2024;10(8):193. doi: 10.3390/jimaging10080193 EDN: XWHBRA
  62. Fu W, Li R. Diagnostic performance of a wearing dynamic ECG recorder for atrial fibrillation screening: the HUAMI heart study. BMC Cardiovascular Disorders. 2021;21(1):558. doi: 10.1186/s12872-021-02363-1 EDN: QKSYGD

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).