Diagnostic and prognostic relevance of imaging-based body composition analysis in postmenopausal women: a review

Cover Image

Cite item

Full Text

Abstract

The article presents an assessment of body composition markers measured by imaging in clinical practice for postmenopausal and aging women. Body composition changes with aging and is specifically affected by endocrinological changes occurring with menopause. Several imaging markers have been proposed and used in the assessment of body composition status. The associations of different imaging markers with cardiometabolic risk and risks for other diseases, with impact on morbidity/mortality, functional impairment, and frailty, are discussed. The imaging markers confirmed by evidence and are applicable to clinical practice are highlighted. With this purpose, the current level of evidence in the literature on reliability and potential associations of each relevant marker was reviewed.

This review describes what can and should be done with available imaging tools (e.g., dual-energy x-ray absorptiometry, ultrasound, computed tomography, and magnetic resonance imaging) in dedicated and opportunistic settings (i.e., tests for assessing body composition vs those for other clinical reasons but wherein exploitation of imaging data is possible) to improve the management and understanding of lifestyle needs of postmenopausal women and thus to prevent or decrease unhealthy aging and rate of women with aging-related diseases.

About the authors

Maria P. Aparisi Gómez

Te Toka Tumai Auckland (Auckland District Health Board); Waipapa Taumata Rau — University of Auckland

Email: pilar.aparisi@tewhatuora.govt.nz
ORCID iD: 0000-0002-6483-7139
New Zealand, Auckland; Auckland

Miriana R. Petrera

National Institute for Infectious Disease “Lazzaro Spallanzani”

Email: mirianapetrera@gmail.com
ORCID iD: 0000-0002-1275-6265
Italy, Rome

Aurelia Santoro

University of Bologna, Sant'Orsola-Malpighi Hospital

Email: aurelia.santoro@unibo.it
ORCID iD: 0000-0002-7187-1116

MD, PhD, Associate Professor

Italy, Bologna

Maria L. Petroni

University of Bologna, Sant'Orsola-Malpighi Hospital

Email: marialetizia.petroni@unibo.it
ORCID iD: 0000-0002-7040-6466

MD, Associate Professor

Italy, Bologna

Chiara Gasperini

IRCCS Istituto Ortopedico Rizzoli

Email: chiara.gasperini@unibo.it
ORCID iD: 0000-0002-5306-0985
Italy, Bologna

Claudio Franceschi

University of Bologna, Sant'Orsola-Malpighi Hospital

Email: claudio.franceschi@unibo.it
ORCID iD: 0000-0001-9841-6386

MD, Professor

Italy, Bologna

Giulio Marchesini

University of Bologna, Sant'Orsola-Malpighi Hospital

Email: giulio.marchesini@unibo.it
ORCID iD: 0000-0003-2407-9860

MD, Professor

Italy, Bologna

Giuseppe Guglielmi

University of Foggia; “IRCCS Casa Sollievo della Sofferenza” Hospital

Author for correspondence.
Email: giuseppe.guglielmi@unifg.it
ORCID iD: 0000-0002-4325-8330

MD, Professor

Italy, Foggia; San Giovanni Rotondo

Alberto Bazzocchi

IRCCS Istituto Ortopedico Rizzoli

Email: abazzocchi@gmail.com
ORCID iD: 0000-0002-2659-4535
Italy, Bologna

References

  1. Thibault R, Genton L, Pichard C. Body composition: Why, when and for who? Clinical Nutrition. 2012;31(4):435–447. doi: 10.1016/j.clnu.2011.12.011
  2. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments. Circulation. 2007;116(1):39–48. doi: 10.1161/CIRCULATIONAHA.106.675355
  3. Neeland IJ, Ross R, Després JP, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. The Lancet Diabetes & Endocrinology. 2019;7(9):715–725. doi: 10.1016/S2213-8587(19)30084-1
  4. Patel P, Abate N. Role of subcutaneous adipose tissue in the pathogenesis of insulin resistance. Journal of Obesity. 2013;2013:1–5. doi: 10.1155/2013/489187
  5. Stolk RP, Meijer R, Mali WPTM, et al. Ultrasound measurements of intraabdominal fat estimate the metabolic syndrome better than do measurements of waist circumference. The American Journal of Clinical Nutrition. 2003;77(4):857–860. doi: 10.1093/ajcn/77.4.857 EDN: GKGESZ
  6. Busetto L, Baggio MB, Zurlo F, et al. Assessment of abdominal fat distribution in obese patients: anthropometry versus computerized tomography. Int J Obes Relat Metab Disord. 2012;16(10):731–736. Available from: https://pubmed.ncbi.nlm.nih.gov/1330952/
  7. Di Somma C, Brunelli V, Savanelli MC, et al. Somatopause: state of the art. Minerva Endocrinol. 2011;36(3):243–255. Available from: https://www.minervamedica.it/en/journals/minerva-endocrinology/
  8. Ashpole NM, Sanders JE, Hodges EL, et al. Growth hormone, insulin-like growth factor-1 and the aging brain. Experimental Gerontology. 2015;68:76–81. doi: 10.1016/j.exger.2014.10.002
  9. Genaro PS, Pinheiro MM, Szejnfeld VL, Martini LA. Secondary hyperparathyroidism and its relationship with sarcopenia in elderly women. Archives of Gerontology and Geriatrics. 2015;60(2):349–353. doi: 10.1016/j.archger.2015.01.005
  10. Baczynski R, Massry SG, Magott M, et al. Effect of parathyroid hormone on energy metabolism ofskeletal muscle. Kidney International. 1985;28(5):722–727. doi: 10.1038/ki.1985.190 EDN: OWJCKF
  11. Bird ML, El Haber N, Batchelor F, et al. Vitamin D and parathyroid hormone are associated with gait instability and poor balance performance in mid-age to older aged women. Gait & Posture. 2018;59:71–75. doi: 10.1016/j.gaitpost.2017.09.036
  12. Cruz-Jentoft AJ, Bahat G, Bauer J, et al; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing. 2018;48(1):16–31. doi: 10.1093/ageing/afy169 EDN: OIPUXJ
  13. Kanis JA, Cooper C, Rizzoli R, et al; on behalf of the Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). Correction to: European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis International. 2019;31(1):209–209. doi: 10.1007/s00198-019-05184-3 EDN: JUIPFL
  14. Martin L, Birdsell L, MacDonald N, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. Journal of Clinical Oncology. 2013;31(12):1539–1547. doi: 10.1200/JCO.2012.45.2722
  15. Holmes CJ, Racette SB. The utility of body composition assessment in nutrition and clinical practice: an overview of current methodology. Nutrients. 2021;13(8):2493. doi: 10.3390/nu13082493 EDN: EASQSD
  16. Prado CM, Ford KL, Gonzalez MC, et al. Nascent to novel methods to evaluate malnutrition and frailty in the surgical patient. Journal of Parenteral and Enteral Nutrition. 2022;47(S1):S54–S68. doi: 10.1002/jpen.2420 EDN: DRWFZD
  17. Gurka MJ, Vishnu A, Santen RJ, DeBoer MD. Progression of metabolic syndrome severity during the menopausal transition. Journal of the American Heart Association. 2016;5(8):14. doi: 10.1161/JAHA.116.003609
  18. Santoro A, Guidarelli G, Ostan R, et al. Gender-specific association of body composition with inflammatory and adipose-related markers in healthy elderly Europeans from the NU-AGE study. European Radiology. 2019;29(9):4968–4979. doi: 10.1007/s00330-018-5973-2 EDN: FRENNW
  19. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. The Journal of Clinical Endocrinology & Metabolism. 2004;89(6):2548–2556. doi: 10.1210/jc.2004-0395
  20. Karvonen-Gutierrez C, Kim C. Association of mid-life changes in body size, body composition and obesity status with the menopausal transition. Healthcare. 2016;4(3):42. doi: 10.3390/healthcare4030042
  21. Son MK, Lim NK, Lim JY, et al. Difference in blood pressure between early and late menopausal transition was significant in healthy Korean women. BMC Women's Health. 2015;15(1):64. doi: 10.1186/s12905-015-0219-9 EDN: MKHCER
  22. El Khoudary SR, Wang L, Brooks MM, et al. Increase HDL-C level over the menopausal transition is associated with greater atherosclerotic progression. Journal of Clinical Lipidology. 2016;10(4):962–969. doi: 10.1016/j.jacl.2016.04.008 EDN: XTFSBN
  23. Joon Cho G, Hyun Lee J, Tae Park H, et al. Postmenopausal status according to years since menopause as an independent risk factor for the metabolic syndrome. Menopause. 2008;15(3):524–529. doi: 10.1097/gme.0b013e3181559860
  24. Stefánska A, Sypniewskay G, Senterkiewicz L. Inflammatory markers and cardiovascular risk in healthy Polish women across the menopausal transition. Clinical Chemistry. 2005;51(10):1893–1895. doi: 10.1373/clinchem.2005.052191
  25. Janssen I. Menopause and the metabolic syndrome the Study of Women's Health Across the Nation. Archives of Internal Medicine. 2008;168(14):1568. doi: 10.1001/archinte.168.14.1568
  26. Matthews KA, Kuller LH, Sutton-Tyrrell K, Chang YF. Changes in cardiovascular risk factors during the perimenopause and postmenopause and carotid artery atherosclerosis in healthy women. Stroke. 2001;32(5):1104–1111. doi: 10.1161/01.STR.32.5.1104
  27. Wang Q, Hassager C, Ravn P, et al. Total and regional body-composition changes in early postmenopausal women: age-related or menopause-related? The American Journal of Clinical Nutrition. 1994;60(6):843–848. doi: 10.1093/ajcn/60.6.843
  28. Razmjou S, Abdulnour J, Bastard JP, et al. Body composition, cardiometabolic risk factors, physical activity, and inflammatory markers in premenopausal women after a 10-year follow-up: a MONET study. Menopause. 2018;25(1):89–97. doi: 10.1097/GME.0000000000000951
  29. Sternfeld B. Physical activity and changes in weight and waist circumference in midlife women: findings from the Study of Women's Health Across the Nation. American Journal of Epidemiology. 2004;160(9):912–922. doi: 10.1093/aje/kwh299 EDN: IKNOTZ
  30. Päivi M, Mirja H, Terttu P. Changes in physical activity involvement and attitude to physical activity in a 16-year follow-up study among the elderly. Journal of Aging Research. 2010;2010:1–7. doi: 10.4061/2010/174290
  31. Hamrick MW, McGee-Lawrence ME, Frechette DM. Fatty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity. Frontiers in Endocrinology. 2016;7(FEB):69. doi: 10.3389/fendo.2016.00069 EDN: VUMQZO
  32. Dennison EM, Sayer AA, Cooper C. Epidemiology of sarcopenia and insight into possible therapeutic targets. Nature Reviews Rheumatology. 2017;13(6):340–347. doi: 10.1038/nrrheum.2017.60
  33. Reginster JY, Beaudart C, Buckinx F, Bruyère O. Osteoporosis and sarcopenia. Current Opinion in Clinical Nutrition and Metabolic Care. 2016;19(1):31–36. doi: 10.1097/MCO.0000000000000230
  34. Curtis E, Litwic A, Cooper C, Dennison E. Determinants of muscle and bone aging. Journal of Cellular Physiology. 2015;230(11):2618–2625. doi: 10.1002/jcp.25001 EDN: UVZLFR
  35. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis. Age and Ageing. 2010;39(4):412–423. doi: 10.1093/ageing/afq034 EDN: NZQOZL
  36. Lan YL, Zou S, Zhang C, et al. Update on the effect of estradiol in postmenopause women with Alzheimer’s disease: a systematic review. Acta Neurologica Belgica. 2016;116(3):249–257. doi: 10.1007/s13760-015-0593-y
  37. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2001;56(3):M146–M157. doi: 10.1093/gerona/56.3.m146
  38. Xu L, Zhang J, Shen S, et al. Association between body composition and frailty in elder inpatients. Clinical Interventions in Aging. 2020;15:313–320. doi: 10.2147/CIA.S243211 EDN: OUVDKF
  39. Bazzocchi A, Diano D, Ponti F, et al. Health and ageing: a cross-sectional study of body composition. Clinical Nutrition. 2013;32(4):569–578. doi: 10.1016/j.clnu.2012.10.004
  40. Wang ZM, Pierson RN, Heymsfield SB. The five-level model: a new approach to organizing body-composition research. The American Journal of Clinical Nutrition. 1992;56(1):19–28. doi: 10.1093/ajcn/56.1.19
  41. Bazzocchi A, Ponti F, Albisinni U, et al. DXA: Technical aspects and application. European Journal of Radiology. 2016;85(8):1481–1492. doi: 10.1016/j.ejrad.2016.04.004
  42. Borga M, West J, Bell JD, et al. Advanced body composition assessment: from body mass index to body composition profiling. Journal of Investigative Medicine. 2018;66(5):1–9. doi: 10.1136/jim-2018-000722
  43. Webber CE. Reproducibility of DXA measurements of bone mineral and body composition: application to routine clinical measurements. In: Preedy VR, editor. Handbook of Anthropometry. New York: Springer New York; 2012. P. 151–165. ISBN: 978-1-4419-1788-1 doi: 10.1007/978-1-4419-1788-1_8
  44. Laskey MA. Dual-energy X-ray absorptiometry and body composition. Nutrition. 1996;12(1):45–51. doi: 10.1016/0899-9007(95)00017-8
  45. Andreoli A, Scalzo G, Masala S, et al. Body composition assessment by dual-energy X-ray absorptiometry (DXA). La radiologia medica. 2009;114(2):286–300. doi: 10.1007/s11547-009-0369-7 EDN: XWSGFI
  46. Ofenheimer A, Breyer-Kohansal R, Hartl S, et al. Reference values of body composition parameters and visceral adipose tissue (VAT) by DXA in adults aged 18–81 years—results from the LEAD cohort. European Journal of Clinical Nutrition. 2020;74(8):1181–1191. doi: 10.1038/s41430-020-0596-5 EDN: GHWJER
  47. Vasan SK, Osmond C, Canoy D, et al. Comparison of regional fat measurements by dual-energy X-ray absorptiometry and conventional anthropometry and their association with markers of diabetes and cardiovascular disease risk. International Journal of Obesity. 2017;42(4):850–857. doi: 10.1038/ijo.2017.289
  48. Aparisi Gómez MP, Ponti F, Mercatelli D, et al. Correlation between DXA and laboratory parameters in normal weight, overweight, and obese patients. Nutrition. 2019;61:143–150. doi: 10.1016/j.nut.2018.10.023 EDN: WNMOCR
  49. Kaul S, Rothney MP, Peters DM, et al. Dual-energy X-Ray absorptiometry for quantification of visceral fat. Obesity. 2012;20(6):1313–1318. doi: 10.1038/oby.2011.393
  50. Shepherd JA, Ng BK, Sommer MJ, Heymsfield SB. Body composition by DXA. Bone. 2017;104:101–105. doi: 10.1016/j.bone.2017.06.010
  51. Shepherd JA, Baim S, Bilezikian JP, Schousboe JT. Executive Summary of the 2013 International Society for Clinical Densitometry Position Development Conference on Body Composition. Journal of Clinical Densitometry. 2013;16(4):489–495. doi: 10.1016/j.jocd.2013.08.005
  52. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS ONE. 2009;4(9):e7038. doi: 10.1371/journal.pone.0007038
  53. Fan B, Shepherd JA, Levine MA, et al. National health and nutrition examination survey whole-body dual-energy X-ray absorptiometry reference data for GE lunar systems. Journal of Clinical Densitometry. 2014;17(3):344–377. doi: 10.1016/j.jocd.2013.08.019
  54. Kullberg J, Brandberg J, Angelhed JE, et al. Whole-body adipose tissue analysis: comparison of MRI, CT and dual energy X-ray absorptiometry. The British Journal of Radiology. 2009;82(974):123–130. doi: 10.1259/bjr/80083156
  55. Walowski CO, Braun W, Maisch MJ, et al. Reference values for skeletal muscle mass – current concepts and methodological considerations. Nutrients. 2020;12(3):755. doi: 10.3390/nu12030755 EDN: LKUAPI
  56. Kim J, Wang ZM, Heymsfield SB, et al. Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. The American Journal of Clinical Nutrition. 2002;76(2):378–383. doi: 10.1093/ajcn/76.2.378
  57. Visser M, Fuerst T, Lang T, et al. Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Journal of Applied Physiology. 1999;87(4):1513–1520. doi: 10.1152/jappl.1999.87.4.1513
  58. Hansen RD, Williamson DA, Finnegan TP, et al. Estimation of thigh muscle cross-sectional area by dual-energy X-ray absorptiometry in frail elderly patients. The American Journal of Clinical Nutrition. 2007;86(4):952–958. doi: 10.1093/ajcn/86.4.952
  59. Zhao X, Wang ZM, Zhang J, et al. Estimation of total body skeletal muscle mass in chinese adults: prediction model by dual-energy X-ray absorptiometry. PLoS ONE. 2013;8(1):e53561. doi: 10.1371/journal.pone.0053561
  60. Freda PU, Shen W, Reyes-Vidal CM, et al. Skeletal muscle mass in acromegaly assessed by magnetic resonance imaging and dual-photon X-ray absorptiometry. The Journal of Clinical Endocrinology & Metabolism. 2009;94(8):2880–2886. doi: 10.1210/jc.2009-0026
  61. Bridge P, Pocock NA, Nguyen T, et al. Validation of longitudinal DXA changes in body composition from pre- to mid-adolescence using MRI as reference. Journal of Clinical Densitometry. 2011;14(3):340–347. doi: 10.1016/j.jocd.2011.04.005
  62. Bredella MA, Ghomi RH, Thomas BJ, et al. Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity. 2010;18(11):2227–2233. doi: 10.1038/oby.2010.5 EDN: NZDTDL
  63. Bilsborough JC, Greenway K, Opar D, et al. The accuracy and precision of DXA for assessing body composition in team sport athletes. Journal of Sports Sciences. 2014;32(19):1821–1828. doi: 10.1080/02640414.2014.926380
  64. Lee K, Shin Y, Huh J, et al. Recent issues on body composition imaging for sarcopenia evaluation. Korean Journal of Radiology. 2019;20(2):205. doi: 10.3348/kjr.2018.0479
  65. Bauer J, Morley JE, Schols AMWJ, et al. Sarcopenia: a time for action. An SCWD position paper. Journal of Cachexia, Sarcopenia and Muscle. 2019;10(5):956–961. doi: 10.1002/jcsm.12483
  66. Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico. American Journal of Epidemiology. 1998;147(8):755–763. doi: 10.1093/oxfordjournals.aje.a009520 EDN: IKMFOZ
  67. Guglielmi G, Ponti F, Agostini M, et al. The role of DXA in sarcopenia. Aging Clinical and Experimental Research. 2016;28(6):1047–1060. doi: 10.1007/s40520-016-0589-3 EDN: HRITUO
  68. Schweighofer N, Colantonio C, Haudum CW, et al. DXA-derived indices in the characterisation of sarcopenia. Nutrients. 2021;14(1):186. doi: 10.3390/nu14010186 EDN: KJWNOX
  69. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. Journal of the American Geriatrics Society. 2002;50(5):889–896. doi: 10.1046/j.1532-5415.2002.50216.x EDN: BAMXZD
  70. Kim YS, Lee Y, Chung YS, et al. Prevalence of sarcopenia and sarcopenic obesity in the Korean population based on the Fourth Korean National Health and Nutritional Examination Surveys. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2012;67(10):1107–1113. doi: 10.1093/gerona/gls071
  71. Imboden MT, Swartz AM, Finch HW, et al. Reference standards for lean mass measures using GE dual energy x-ray absorptiometry in Caucasian adults. PLOS ONE. 2017;12(4):e0176161. doi: 10.1371/journal.pone.0176161
  72. Alkahtani SA. A cross-sectional study on sarcopenia using different methods: reference values for healthy Saudi young men. BMC Musculoskeletal Disorders. 2017;18(1):119. doi: 10.1186/s12891-017-1483-7 EDN: IDHMXM
  73. Sanada K, Miyachi M, Tanimoto M, et al. A cross-sectional study of sarcopenia in Japanese men and women: reference values and association with cardiovascular risk factors. European Journal of Applied Physiology. 2010;110(1):57–65. doi: 10.1007/s00421-010-1473-z EDN: JBDBBS
  74. Diano D, Ponti F, Guerri S, et al. Upper and lower limbs composition: a comparison between anthropometry and dual-energy X-ray absorptiometry in healthy people. Archives of Osteoporosis. 2017;12(1):78. doi: 10.1007/s11657-017-0374-8
  75. Baracos VE, Arribas L. Sarcopenic obesity: hidden muscle wasting and its impact for survival and complications of cancer therapy. Annals of Oncology. 2018;29:ii1–ii9. doi: 10.1093/annonc/mdx810
  76. Chiles Shaffer N, Ferrucci L, Shardell M, et al. Agreement and predictive validity using less-conservative foundation for the National Institutes of Health Sarcopenia Project Weakness Cutpoints. Journal of the American Geriatrics Society. 2016;65(3):574–579. doi: 10.1111/jgs.14706
  77. Cawthon PM, Peters KW, Shardell MD, et al. Cutpoints for low appendicular lean mass that identify older adults with clinically significant weakness. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2014;69(5):567–575. doi: 10.1093/gerona/glu023
  78. Kyle UG, Genton L, Hans D, et al. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. European Journal of Clinical Nutrition. 2001;55(8):663–672. doi: 10.1038/sj.ejcn.1601198
  79. Bazzocchi A, Filonzi G, Ponti F, et al. Ultrasound: Which role in body composition? European Journal of Radiology. 2016;85(8):1469–1480. doi: 10.1016/j.ejrad.2016.04.005 EDN: WVPHNV
  80. Bazzocchi A, Filonzi G, Ponti F, et al. The Role of Ultrasonography in the evaluation of abdominal fat. Academic Radiology. 2013;20(10):1278–1285. doi: 10.1016/j.acra.2013.07.009
  81. Ticinesi A, Meschi T, Narici MV, et al. Muscle ultrasound and sarcopenia in older individuals: a clinical perspective. Journal of the American Medical Directors Association. 2017;18(4):290–300. doi: 10.1016/j.jamda.2016.11.013
  82. Sanada K, Kearns CF, Midorikawa T, Abe T. Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. European Journal of Applied Physiology. 2005;96(1):24–31. doi: 10.1007/s00421-005-0061-0 EDN: OIBMAZ
  83. Narici MV, Maganaris CN, Reeves ND, Capodaglio P. Effect of aging on human muscle architecture. Journal of Applied Physiology. 2003;95(6):2229–2234. doi: 10.1152/japplphysiol.00433.2003
  84. Kwah LK, Pinto RZ, Diong J, Herbert RD. Reliability and validity of ultrasound measurements of muscle fascicle length and pennation in humans: a systematic review. Journal of Applied Physiology. 2013;114(6):761–769. doi: 10.1152/japplphysiol.01430.2011
  85. Bolsterlee B, Gandevia SC, Herbert RD. Ultrasound imaging of the human medial gastrocnemius muscle: how to orient the transducer so that muscle fascicles lie in the image plane. Journal of Biomechanics. 2016;49(7):1002–1008. doi: 10.1016/j.jbiomech.2016.02.014
  86. Körting C, Schlippe M, Petersson S, et al. In vivo muscle morphology comparison in post-stroke survivors using ultrasonography and diffusion tensor imaging. Scientific Reports. 2019;9(1):1–11. doi: 10.1038/s41598-019-47968-x EDN: ZDKOHT
  87. Guerri S, Mercatelli D, Aparisi Gómez MP, et al. Quantitative imaging techniques for the assessment of osteoporosis and sarcopenia. Quantitative Imaging in Medicine and Surgery. 2018;8(1):60–85. doi: 10.21037/qims.2018.01.05 EDN: YGBWVN
  88. Peng YC, Wu CH, Tien YW, et al. Preoperative sarcopenia is associated with poor overall survival in pancreatic cancer patients following pancreaticoduodenectomy. European Radiology. 2020;31(4):2472–2481. doi: 10.1007/s00330-020-07294-7 EDN: QEVZUE
  89. Ceniccola GD, Castro MG, Piovacari SMF, et al. Current technologies in body composition assessment: advantages and disadvantages. Nutrition. 2019;62:25–31. doi: 10.1016/j.nut.2018.11.028
  90. Tolonen A, Pakarinen T, Sassi A, et al. Methodology, clinical applications, and future directions of body composition analysis using computed tomography (CT) images: A review. European Journal of Radiology. 2021;145:109943. doi: 10.1016/j.ejrad.2021.109943 EDN: ZGMEUC
  91. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, et al. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. Journal of Applied Physiology. 1998;85(1):115–122. doi: 10.1152/jappl.1998.85.1.115
  92. Wang FZ, Sun H, Zhou J, et al. Reliability and validity of abdominal skeletal muscle area measurement using magnetic resonance imaging. Academic Radiology. 2021;28(12):1692–1698. doi: 10.1016/j.acra.2020.09.013 EDN: ZAJXXO
  93. Faron A, Sprinkart AM, Kuetting DLR, et al. Body composition analysis using CT and MRI: intra-individual intermodal comparison of muscle mass and myosteatosis. Scientific Reports. 2020;10(1):11756. doi: 10.1038/s41598-020-68797-3 EDN: BBLUJW
  94. Almada-Correia I, Neves PM, Mäkitie A, Ravasco P. Body composition evaluation in head and neck cancer patients: a review. Frontiers in Oncology. 2019;9:1112. doi: 10.3389/fonc.2019.01112
  95. Matsuyama R, Maeda K, Yamanaka Y, et al. Assessing skeletal muscle mass based on the cross-sectional area of muscles at the 12th thoracic vertebra level on computed tomography in patients with oral squamous cell carcinoma. Oral Oncology. 2021;113:105126. doi: 10.1016/j.oraloncology.2020.105126 EDN: EZAWPC
  96. Troschel AS, Troschel FM, Best TD, et al. Computed tomography–based body composition analysis and its role in lung cancer care. Journal of Thoracic Imaging. 2020;35(2):91–100. doi: 10.1097/RTI.0000000000000428 EDN: OCZDGG
  97. Amini B, Boyle SP, Boutin RD, Lenchik L. Approaches to assessment of muscle mass and myosteatosis on computed tomography: a systematic review. The Journals of Gerontology: Series A. 2019;74(10):1671–1678. doi: 10.1093/gerona/glz034
  98. Boutin RD, Yao L, Canter RJ, Lenchik L. Sarcopenia: current concepts and imaging implications. American Journal of Roentgenology. 2015;205(3):W255–W266. doi: 10.2214/AJR.15.14635
  99. Clynes MA, Edwards MH, Buehring B, et al. Definitions of sarcopenia: associations with previous falls and fracture in a population sample. Calcified Tissue International. 2015;97(5):445–452. doi: 10.1007/s00223-015-0044-z EDN: PWIAFZ
  100. Sousa AS, Guerra RS, Fonseca I, et al. Sarcopenia and length of hospital stay. European Journal of Clinical Nutrition. 2015;70(5):595–601. doi: 10.1038/ejcn.2015.207
  101. Tyrovolas S, Koyanagi A, Olaya B, et al. The role of muscle mass and body fat on disability among older adults: A cross-national analysis. Experimental Gerontology. 2015;69:27–35. doi: 10.1016/j.exger.2015.06.002 EDN: USFYDJ
  102. Schaap LA, van Schoor NM, Lips P, Visser M. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: the longitudinal aging study amsterdam. The Journals of Gerontology: Series A. 2017;73(9):1199–1204. doi: 10.1093/gerona/glx245
  103. Tang TC, Hwang AC, Liu LK, et al. FNIH-defined sarcopenia predicts adverse outcomes among community-dwelling older people in taiwan: results from i-lan longitudinal aging study. The Journals of Gerontology: Series A. 2017;73(6):828–834. doi: 10.1093/gerona/glx148
  104. Bianchi L, Abete P, Bellelli G, et al; for the GLISTEN Group Investigators. Prevalence and clinical correlates of sarcopenia, identified according to the EWGSOP definition and diagnostic algorithm, in hospitalized older people: The GLISTEN Study. The Journals of Gerontology: Series A. 2017;72(11):1575–1581. doi: 10.1093/gerona/glw343
  105. Kroker A, Zhu Y, Manske SL, et al. Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT. Bone. 2017;97:43–48. doi: 10.1016/j.bone.2016.12.015
  106. Erlandson MC, Wong AKO, Szabo E, et al. Muscle and myotendinous tissue properties at the distal tibia as assessed by high-resolution peripheral quantitative computed tomography. Journal of Clinical Densitometry. 2017;20(2):226–232. doi: 10.1016/j.jocd.2016.10.005
  107. Hildebrand KN, Sidhu K, Gabel L, et al. The Assessment of skeletal muscle and cortical bone by second-generation HR-pQCT at the Tibial Midshaft. Journal of Clinical Densitometry. 2021;24(3):465–473. doi: 10.1016/j.jocd.2020.11.001 EDN: TZJABG
  108. Chow SKH, van Mourik M, Hung VWY, et al. HR-pQCT for the evaluation of muscle quality and intramuscular fat infiltration in ageing skeletal muscle. Journal of Personalized Medicine. 2022;12(6):1016. doi: 10.3390/jpm12061016 EDN: HTRGSW
  109. Aparisi Gómez MP, Ayuso Benavent C, Simoni P, et al. Imaging of bone marrow: from science to practice. Seminars in Musculoskeletal Radiology. 2022;26(04):396–411. doi: 10.1055/s-0042-1745803
  110. Aparisi Gómez MP, Ayuso Benavent C, Simoni P, et al. Fat and bone: the multiperspective analysis of a close relationship. Quantitative Imaging in Medicine and Surgery. 2020;10(8):1614–1635. doi: 10.21037/qims.2020.01.11 EDN: FCYWQZ
  111. Gloor M, Fasler S, Fischmann A, et al. Quantification of fat infiltration in oculopharyngeal muscular dystrophy: Comparison of three MR imaging methods. Journal of Magnetic Resonance Imaging. 2010;33(1):203–210. doi: 10.1002/jmri.22431
  112. Borga M, Ahlgren A, Romu T, et al. Reproducibility and repeatability of MRI-based body composition analysis. Magnetic Resonance in Medicine. 2020;84(6):3146–3156. doi: 10.1002/mrm.28360 EDN: AYEETH
  113. Baum T, Cordes C, Dieckmeyer M, et al. MR-based assessment of body fat distribution and characteristics. European Journal of Radiology. 2016;85(8):1512–1518. doi: 10.1016/j.ejrad.2016.02.013
  114. Tyagi A, Yeganeh O, Levin Y, et al. Intra- and inter-examination repeatability of magnetic resonance spectroscopy, magnitude-based MRI, and complex-based MRI for estimation of hepatic proton density fat fraction in overweight and obese children and adults. Abdominal Imaging. 2015;40(8):3070–3077. doi: 10.1007/s00261-015-0542-5 EDN: MALVVP
  115. Eggers H, Börnert P. Chemical shift encoding-based water–fat separation methods. Journal of Magnetic Resonance Imaging. 2014;40(2):251–268. doi: 10.1002/jmri.24568
  116. Thomas EL, Fitzpatrick JA, Malik SJ, et al. Whole body fat: Content and distribution. Progress in Nuclear Magnetic Resonance Spectroscopy. 2013;73:56–80. doi: 10.1016/j.pnmrs.2013.04.001 EDN: SQMCPV
  117. Shen W, Punyanitya M, Wang ZM, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. Journal of Applied Physiology. 2004;97(6):2333–2338. doi: 10.1152/japplphysiol.00744.2004
  118. Shen W, Punyanitya M, Wang ZM, et al. Visceral adipose tissue: relations between single-slice areas and total volume. The American Journal of Clinical Nutrition. 2004;80(2):271–278. doi: 10.1093/ajcn/80.2.271
  119. Shen W, Punyanitya M, Chen J, et al. Visceral adipose tissue: relationships between single slice areas at different locations and obesity-related health risks. International Journal of Obesity. 2006;31(5):763–769. doi: 10.1038/sj.ijo.0803474
  120. Irlbeck T, Massaro JM, Bamberg F, et al. Association between single-slice measurements of visceral and abdominal subcutaneous adipose tissue with volumetric measurements: the Framingham Heart Study. International Journal of Obesity. 2010;34(4):781–787. doi: 10.1038/ijo.2009.279
  121. Hu HH, Chen J, Shen W. Segmentation and quantification of adipose tissue by magnetic resonance imaging. Magnetic Resonance Materials in Physics, Biology and Medicine. 2015;29(2):259–276. doi: 10.1007/s10334-015-0498-z EDN: YSWEEO
  122. Schweitzer L, Geisler C, Pourhassan M, et al. What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? The American Journal of Clinical Nutrition. 2015;102(1):58–65. doi: 10.3945/ajcn.115.111203
  123. Yip C, Dinkel C, Mahajan A, et al. Imaging body composition in cancer patients: visceral obesity, sarcopenia and sarcopenic obesity may impact on clinical outcome. Insights into Imaging. 2015;6(4):489–497. doi: 10.1007/s13244-015-0414-0 EDN: BGDHDG
  124. Noumura Y, Kamishima T, Sutherland K, Nishimura H. Visceral adipose tissue area measurement at a single level: can it represent visceral adipose tissue volume? The British Journal of Radiology. 2017;90(1077):20170253. doi: 10.1259/bjr.20170253
  125. Kuk JL, Church TS, Blair SN, Ross R. Measurement site and the association between visceral and abdominal subcutaneous adipose tissue with metabolic risk in women. Obesity. 2010;18(7):1336–1340. doi: 10.1038/oby.2009.414 EDN: NZCTTB
  126. Kullberg J, Ahlström H, Johansson L, Frimmel H. Automated and reproducible segmentation of visceral and subcutaneous adipose tissue from abdominal MRI. International Journal of Obesity. 2007;31(12):1806–1817. doi: 10.1038/sj.ijo.0803671
  127. Fallah F, Machann J, Martirosian P, et al. Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla. Magnetic Resonance Materials in Physics, Biology and Medicine. 2016;30(2):139–151. doi: 10.1007/s10334-016-0588-6 EDN: ZPSMEQ
  128. Kirchhoff K, Kantartzis K, Machann J, et al. Impact of different fat depots on insulin sensitivity: predominant role of liver fat. Journal of Diabetes Science and Technology. 2007;1(5):753–759. doi: 10.1177/193229680700100521
  129. West J, Romu T, Thorell S, et al. Precision of MRI-based body composition measurements of postmenopausal women. PLOS ONE. 2018;13(2):e0192495. doi: 10.1371/journal.pone.0192495
  130. Machann J, Thamer C, Stefan N, et al. Follow-up whole-body assessment of adipose tissue compartments during a lifestyle intervention in a large cohort at increased risk for type 2 diabetes. Radiology. 2010;257(2):353–363. doi: 10.1148/radiol.10092284
  131. Boettcher M, Machann J, Stefan N, et al. Intermuscular adipose tissue (IMAT): Association with other adipose tissue compartments and insulin sensitivity. Journal of Magnetic Resonance Imaging. 2009;29(6):1340–1345. doi: 10.1002/jmri.21754
  132. Prado CMM, Heymsfield SB. Lean tissue imaging. Journal of Parenteral and Enteral Nutrition. 2014;38(8):940–953. doi: 10.1177/0148607114550189 EDN: UVANLJ
  133. Aparisi Gómez MP, Weidekamm C, Aparisi F, Bazzocchi A. Sports and metabolic bone disease. Seminars in Musculoskeletal Radiology. 2020;24(03):277–289. doi: 10.1055/s-0040-1709483 EDN: DKIUHW
  134. Macaluso A, Nimmo MA, Foster JE, et al. Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women. Muscle & Nerve. 2002;25(6):858–863. doi: 10.1002/mus.10113
  135. Wang B, Torriani M. Artificial Intelligence in the Evaluation of Body Composition. Seminars in Musculoskeletal Radiology. 2020;24(01):030–037. doi: 10.1055/s-0039-3400267 EDN: GTBGCX

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Analysis of body composition using dual-energy X-ray absorptiometry. The measurements are based on a three-component model, which for simplicity can be represented as fat mass (FM — yellow), lean mass excluding bones (LM — red), and bone mineral content (BMC — white). By examining the whole body and individual areas, it is possible to estimate body mass and bone mineral density.

Download (263KB)
3. Fig. 2. Linear measurements of adipose tissue based on ultrasound and computed tomography data: a — minimum abdominal skinfold thickness (MinASFT) is defined as the distance between the anterior surface of the linea alba and the dermo-hypodermal junction (1), measured in a plane passing through the subcostal region. The thickness of preperitoneal fat (2) is measured from the anterior surface of the peritoneum covering the liver to the posterior surface of the linea alba in a plane passing through the subcostal region; b — maximum abdominal skinfold thickness (MaxASFT) is defined as the distance between the anterior surface of the linea alba and the dermo-hypodermal junction (3), measured at the level of the suprapubic region. The thickness of intra-abdominal fat is usually measured as the distance from the posterior wall of the abdominal muscle to the anterior wall of the aorta in the suprapubic region (4).

Download (319KB)
4. Fig. 3. Measurement of the area of various fat compartments using magnetic resonance imaging: a — image obtained in T1-weighted Fast Spin Echo mode at the level of the II–III lumbar vertebrae; b — segmentation of subcutaneous adipose tissue (orange), visceral adipose tissue (yellow) and non-adipose tissue (blue). Gas in the intestinal loops is visualised as black areas, and bone tissue as white areas.

Download (136KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).