Диагностическая и прогностическая значимость анализа композиционного состава тела с применением методов медицинской визуализации у женщин в постменопаузе: обзор
- Авторы: Aparisi Gómez M.P.1,2, Petrera M.R.3, Santoro A.4, Petroni M.L.4, Gasperini C.5, Franceschi C.4, Marchesini G.4, Guglielmi G.6,7, Bazzocchi A.5
-
Учреждения:
- Te Toka Tumai Auckland (Auckland District Health Board)
- Waipapa Taumata Rau — University of Auckland
- National Institute for Infectious Disease «Lazzaro Spallanzani»
- University of Bologna, Sant'Orsola-Malpighi Hospital
- IRCCS Istituto Ortopedico Rizzoli
- University of Foggia
- «IRCCS Casa Sollievo della Sofferenza» Hospital
- Выпуск: Том 6, № 4 (2025)
- Страницы: 583-602
- Раздел: Обзоры
- URL: https://ogarev-online.ru/DD/article/view/373798
- DOI: https://doi.org/10.17816/DD641570
- EDN: https://elibrary.ru/VQQVDQ
- ID: 373798
Цитировать
Полный текст
Аннотация
В статье представлена оценка маркёров композиционного состава тела у женщин в период постменопаузы и старения, полученных с помощью методов медицинской визуализации в условиях реальной клинической практики. С возрастом состав тела меняется, что особенно заметно в период менопаузы, когда в организме женщины происходят эндокринные изменения. В научной практике для оценки композиционного состава тела используют определённые визуализационные маркёры. В настоящем обзоре проанализированы связи различных визуализационных показателей с риском развития кардиометаболических нарушений и других заболеваний с учётом их влияния на частоту развития сопутствующих заболеваний и смертность, развитие функциональных нарушений и старческой астении. Особое внимание уделено визуализационным маркёрам, диагностическая эффективность которых подтверждена, что позволяет их использовать в условиях клинической практики. С этой целью проанализированы публикации, содержащие актуальные доказательные данные о надёжности исследуемых маркёров и их возможной связи с другими факторами.
В обзоре рассмотрены возможности для улучшения тактики ведения женщин в постменопаузе, изучения их жизненных потребностей и профилактики или снижения степени выраженности неблагоприятного старения и частоты развития возрастных заболеваний посредством применения существующих методов медицинской визуализации (например, двухэнергетической рентгеновской абсорбциометрии, ультразвукового исследования, компьютерной томографии и магнитно-резонансной томографии) при целенаправленном исследовании композиционного состава тела и проведении исследований по другим клиническим показаниям с получением соответствующих данных.
Полный текст
Открыть статью на сайте журналаОб авторах
Maria Pilar Aparisi Gómez
Te Toka Tumai Auckland (Auckland District Health Board); Waipapa Taumata Rau — University of Auckland
Email: pilar.aparisi@tewhatuora.govt.nz
ORCID iD: 0000-0002-6483-7139
Новая Зеландия, Окленд; Окленд
Miriana Rosaria Petrera
National Institute for Infectious Disease «Lazzaro Spallanzani»
Email: mirianapetrera@gmail.com
ORCID iD: 0000-0002-1275-6265
Италия, Рим
Aurelia Santoro
University of Bologna, Sant'Orsola-Malpighi Hospital
Email: aurelia.santoro@unibo.it
ORCID iD: 0000-0002-7187-1116
доцент
Италия, БолоньяMaria Letizia Petroni
University of Bologna, Sant'Orsola-Malpighi Hospital
Email: marialetizia.petroni@unibo.it
ORCID iD: 0000-0002-7040-6466
доцент
Италия, БолоньяChiara Gasperini
IRCCS Istituto Ortopedico Rizzoli
Email: chiara.gasperini@unibo.it
ORCID iD: 0000-0002-5306-0985
Италия, Болонья
Claudio Franceschi
University of Bologna, Sant'Orsola-Malpighi Hospital
Email: claudio.franceschi@unibo.it
ORCID iD: 0000-0001-9841-6386
профессор
Италия, БолоньяGiulio Marchesini
University of Bologna, Sant'Orsola-Malpighi Hospital
Email: giulio.marchesini@unibo.it
ORCID iD: 0000-0003-2407-9860
профессор
Италия, БолоньяGiuseppe Guglielmi
University of Foggia; «IRCCS Casa Sollievo della Sofferenza» Hospital
Автор, ответственный за переписку.
Email: giuseppe.guglielmi@unifg.it
ORCID iD: 0000-0002-4325-8330
профессор
Италия, Фоджа; Сан-Джованни-РотондоAlberto Bazzocchi
IRCCS Istituto Ortopedico Rizzoli
Email: abazzocchi@gmail.com
ORCID iD: 0000-0002-2659-4535
Италия, Болонья
Список литературы
- Thibault R, Genton L, Pichard C. Body composition: Why, when and for who? Clinical Nutrition. 2012;31(4):435–447. doi: 10.1016/j.clnu.2011.12.011
- Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments. Circulation. 2007;116(1):39–48. doi: 10.1161/CIRCULATIONAHA.106.675355
- Neeland IJ, Ross R, Després JP, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. The Lancet Diabetes & Endocrinology. 2019;7(9):715–725. doi: 10.1016/S2213-8587(19)30084-1
- Patel P, Abate N. Role of subcutaneous adipose tissue in the pathogenesis of insulin resistance. Journal of Obesity. 2013;2013:1–5. doi: 10.1155/2013/489187
- Stolk RP, Meijer R, Mali WPTM, et al. Ultrasound measurements of intraabdominal fat estimate the metabolic syndrome better than do measurements of waist circumference. The American Journal of Clinical Nutrition. 2003;77(4):857–860. doi: 10.1093/ajcn/77.4.857 EDN: GKGESZ
- Busetto L, Baggio MB, Zurlo F, et al. Assessment of abdominal fat distribution in obese patients: anthropometry versus computerized tomography. Int J Obes Relat Metab Disord. 2012;16(10):731–736. Available from: https://pubmed.ncbi.nlm.nih.gov/1330952/
- Di Somma C, Brunelli V, Savanelli MC, et al. Somatopause: state of the art. Minerva Endocrinol. 2011;36(3):243–255. Available from: https://www.minervamedica.it/en/journals/minerva-endocrinology/
- Ashpole NM, Sanders JE, Hodges EL, et al. Growth hormone, insulin-like growth factor-1 and the aging brain. Experimental Gerontology. 2015;68:76–81. doi: 10.1016/j.exger.2014.10.002
- Genaro PS, Pinheiro MM, Szejnfeld VL, Martini LA. Secondary hyperparathyroidism and its relationship with sarcopenia in elderly women. Archives of Gerontology and Geriatrics. 2015;60(2):349–353. doi: 10.1016/j.archger.2015.01.005
- Baczynski R, Massry SG, Magott M, et al. Effect of parathyroid hormone on energy metabolism ofskeletal muscle. Kidney International. 1985;28(5):722–727. doi: 10.1038/ki.1985.190 EDN: OWJCKF
- Bird ML, El Haber N, Batchelor F, et al. Vitamin D and parathyroid hormone are associated with gait instability and poor balance performance in mid-age to older aged women. Gait & Posture. 2018;59:71–75. doi: 10.1016/j.gaitpost.2017.09.036
- Cruz-Jentoft AJ, Bahat G, Bauer J, et al; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing. 2018;48(1):16–31. doi: 10.1093/ageing/afy169 EDN: OIPUXJ
- Kanis JA, Cooper C, Rizzoli R, et al; on behalf of the Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). Correction to: European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis International. 2019;31(1):209–209. doi: 10.1007/s00198-019-05184-3 EDN: JUIPFL
- Martin L, Birdsell L, MacDonald N, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. Journal of Clinical Oncology. 2013;31(12):1539–1547. doi: 10.1200/JCO.2012.45.2722
- Holmes CJ, Racette SB. The utility of body composition assessment in nutrition and clinical practice: an overview of current methodology. Nutrients. 2021;13(8):2493. doi: 10.3390/nu13082493 EDN: EASQSD
- Prado CM, Ford KL, Gonzalez MC, et al. Nascent to novel methods to evaluate malnutrition and frailty in the surgical patient. Journal of Parenteral and Enteral Nutrition. 2022;47(S1):S54–S68. doi: 10.1002/jpen.2420 EDN: DRWFZD
- Gurka MJ, Vishnu A, Santen RJ, DeBoer MD. Progression of metabolic syndrome severity during the menopausal transition. Journal of the American Heart Association. 2016;5(8):14. doi: 10.1161/JAHA.116.003609
- Santoro A, Guidarelli G, Ostan R, et al. Gender-specific association of body composition with inflammatory and adipose-related markers in healthy elderly Europeans from the NU-AGE study. European Radiology. 2019;29(9):4968–4979. doi: 10.1007/s00330-018-5973-2 EDN: FRENNW
- Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. The Journal of Clinical Endocrinology & Metabolism. 2004;89(6):2548–2556. doi: 10.1210/jc.2004-0395
- Karvonen-Gutierrez C, Kim C. Association of mid-life changes in body size, body composition and obesity status with the menopausal transition. Healthcare. 2016;4(3):42. doi: 10.3390/healthcare4030042
- Son MK, Lim NK, Lim JY, et al. Difference in blood pressure between early and late menopausal transition was significant in healthy Korean women. BMC Women's Health. 2015;15(1):64. doi: 10.1186/s12905-015-0219-9 EDN: MKHCER
- El Khoudary SR, Wang L, Brooks MM, et al. Increase HDL-C level over the menopausal transition is associated with greater atherosclerotic progression. Journal of Clinical Lipidology. 2016;10(4):962–969. doi: 10.1016/j.jacl.2016.04.008 EDN: XTFSBN
- Joon Cho G, Hyun Lee J, Tae Park H, et al. Postmenopausal status according to years since menopause as an independent risk factor for the metabolic syndrome. Menopause. 2008;15(3):524–529. doi: 10.1097/gme.0b013e3181559860
- Stefánska A, Sypniewskay G, Senterkiewicz L. Inflammatory markers and cardiovascular risk in healthy Polish women across the menopausal transition. Clinical Chemistry. 2005;51(10):1893–1895. doi: 10.1373/clinchem.2005.052191
- Janssen I. Menopause and the metabolic syndrome the Study of Women's Health Across the Nation. Archives of Internal Medicine. 2008;168(14):1568. doi: 10.1001/archinte.168.14.1568
- Matthews KA, Kuller LH, Sutton-Tyrrell K, Chang YF. Changes in cardiovascular risk factors during the perimenopause and postmenopause and carotid artery atherosclerosis in healthy women. Stroke. 2001;32(5):1104–1111. doi: 10.1161/01.STR.32.5.1104
- Wang Q, Hassager C, Ravn P, et al. Total and regional body-composition changes in early postmenopausal women: age-related or menopause-related? The American Journal of Clinical Nutrition. 1994;60(6):843–848. doi: 10.1093/ajcn/60.6.843
- Razmjou S, Abdulnour J, Bastard JP, et al. Body composition, cardiometabolic risk factors, physical activity, and inflammatory markers in premenopausal women after a 10-year follow-up: a MONET study. Menopause. 2018;25(1):89–97. doi: 10.1097/GME.0000000000000951
- Sternfeld B. Physical activity and changes in weight and waist circumference in midlife women: findings from the Study of Women's Health Across the Nation. American Journal of Epidemiology. 2004;160(9):912–922. doi: 10.1093/aje/kwh299 EDN: IKNOTZ
- Päivi M, Mirja H, Terttu P. Changes in physical activity involvement and attitude to physical activity in a 16-year follow-up study among the elderly. Journal of Aging Research. 2010;2010:1–7. doi: 10.4061/2010/174290
- Hamrick MW, McGee-Lawrence ME, Frechette DM. Fatty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity. Frontiers in Endocrinology. 2016;7(FEB):69. doi: 10.3389/fendo.2016.00069 EDN: VUMQZO
- Dennison EM, Sayer AA, Cooper C. Epidemiology of sarcopenia and insight into possible therapeutic targets. Nature Reviews Rheumatology. 2017;13(6):340–347. doi: 10.1038/nrrheum.2017.60
- Reginster JY, Beaudart C, Buckinx F, Bruyère O. Osteoporosis and sarcopenia. Current Opinion in Clinical Nutrition and Metabolic Care. 2016;19(1):31–36. doi: 10.1097/MCO.0000000000000230
- Curtis E, Litwic A, Cooper C, Dennison E. Determinants of muscle and bone aging. Journal of Cellular Physiology. 2015;230(11):2618–2625. doi: 10.1002/jcp.25001 EDN: UVZLFR
- Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis. Age and Ageing. 2010;39(4):412–423. doi: 10.1093/ageing/afq034 EDN: NZQOZL
- Lan YL, Zou S, Zhang C, et al. Update on the effect of estradiol in postmenopause women with Alzheimer’s disease: a systematic review. Acta Neurologica Belgica. 2016;116(3):249–257. doi: 10.1007/s13760-015-0593-y
- Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2001;56(3):M146–M157. doi: 10.1093/gerona/56.3.m146
- Xu L, Zhang J, Shen S, et al. Association between body composition and frailty in elder inpatients. Clinical Interventions in Aging. 2020;15:313–320. doi: 10.2147/CIA.S243211 EDN: OUVDKF
- Bazzocchi A, Diano D, Ponti F, et al. Health and ageing: a cross-sectional study of body composition. Clinical Nutrition. 2013;32(4):569–578. doi: 10.1016/j.clnu.2012.10.004
- Wang ZM, Pierson RN, Heymsfield SB. The five-level model: a new approach to organizing body-composition research. The American Journal of Clinical Nutrition. 1992;56(1):19–28. doi: 10.1093/ajcn/56.1.19
- Bazzocchi A, Ponti F, Albisinni U, et al. DXA: Technical aspects and application. European Journal of Radiology. 2016;85(8):1481–1492. doi: 10.1016/j.ejrad.2016.04.004
- Borga M, West J, Bell JD, et al. Advanced body composition assessment: from body mass index to body composition profiling. Journal of Investigative Medicine. 2018;66(5):1–9. doi: 10.1136/jim-2018-000722
- Webber CE. Reproducibility of DXA measurements of bone mineral and body composition: application to routine clinical measurements. In: Preedy VR, editor. Handbook of Anthropometry. New York: Springer New York; 2012. P. 151–165. ISBN: 978-1-4419-1788-1 doi: 10.1007/978-1-4419-1788-1_8
- Laskey MA. Dual-energy X-ray absorptiometry and body composition. Nutrition. 1996;12(1):45–51. doi: 10.1016/0899-9007(95)00017-8
- Andreoli A, Scalzo G, Masala S, et al. Body composition assessment by dual-energy X-ray absorptiometry (DXA). La radiologia medica. 2009;114(2):286–300. doi: 10.1007/s11547-009-0369-7 EDN: XWSGFI
- Ofenheimer A, Breyer-Kohansal R, Hartl S, et al. Reference values of body composition parameters and visceral adipose tissue (VAT) by DXA in adults aged 18–81 years—results from the LEAD cohort. European Journal of Clinical Nutrition. 2020;74(8):1181–1191. doi: 10.1038/s41430-020-0596-5 EDN: GHWJER
- Vasan SK, Osmond C, Canoy D, et al. Comparison of regional fat measurements by dual-energy X-ray absorptiometry and conventional anthropometry and their association with markers of diabetes and cardiovascular disease risk. International Journal of Obesity. 2017;42(4):850–857. doi: 10.1038/ijo.2017.289
- Aparisi Gómez MP, Ponti F, Mercatelli D, et al. Correlation between DXA and laboratory parameters in normal weight, overweight, and obese patients. Nutrition. 2019;61:143–150. doi: 10.1016/j.nut.2018.10.023 EDN: WNMOCR
- Kaul S, Rothney MP, Peters DM, et al. Dual-energy X-Ray absorptiometry for quantification of visceral fat. Obesity. 2012;20(6):1313–1318. doi: 10.1038/oby.2011.393
- Shepherd JA, Ng BK, Sommer MJ, Heymsfield SB. Body composition by DXA. Bone. 2017;104:101–105. doi: 10.1016/j.bone.2017.06.010
- Shepherd JA, Baim S, Bilezikian JP, Schousboe JT. Executive Summary of the 2013 International Society for Clinical Densitometry Position Development Conference on Body Composition. Journal of Clinical Densitometry. 2013;16(4):489–495. doi: 10.1016/j.jocd.2013.08.005
- Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS ONE. 2009;4(9):e7038. doi: 10.1371/journal.pone.0007038
- Fan B, Shepherd JA, Levine MA, et al. National health and nutrition examination survey whole-body dual-energy X-ray absorptiometry reference data for GE lunar systems. Journal of Clinical Densitometry. 2014;17(3):344–377. doi: 10.1016/j.jocd.2013.08.019
- Kullberg J, Brandberg J, Angelhed JE, et al. Whole-body adipose tissue analysis: comparison of MRI, CT and dual energy X-ray absorptiometry. The British Journal of Radiology. 2009;82(974):123–130. doi: 10.1259/bjr/80083156
- Walowski CO, Braun W, Maisch MJ, et al. Reference values for skeletal muscle mass – current concepts and methodological considerations. Nutrients. 2020;12(3):755. doi: 10.3390/nu12030755 EDN: LKUAPI
- Kim J, Wang ZM, Heymsfield SB, et al. Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. The American Journal of Clinical Nutrition. 2002;76(2):378–383. doi: 10.1093/ajcn/76.2.378
- Visser M, Fuerst T, Lang T, et al. Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Journal of Applied Physiology. 1999;87(4):1513–1520. doi: 10.1152/jappl.1999.87.4.1513
- Hansen RD, Williamson DA, Finnegan TP, et al. Estimation of thigh muscle cross-sectional area by dual-energy X-ray absorptiometry in frail elderly patients. The American Journal of Clinical Nutrition. 2007;86(4):952–958. doi: 10.1093/ajcn/86.4.952
- Zhao X, Wang ZM, Zhang J, et al. Estimation of total body skeletal muscle mass in chinese adults: prediction model by dual-energy X-ray absorptiometry. PLoS ONE. 2013;8(1):e53561. doi: 10.1371/journal.pone.0053561
- Freda PU, Shen W, Reyes-Vidal CM, et al. Skeletal muscle mass in acromegaly assessed by magnetic resonance imaging and dual-photon X-ray absorptiometry. The Journal of Clinical Endocrinology & Metabolism. 2009;94(8):2880–2886. doi: 10.1210/jc.2009-0026
- Bridge P, Pocock NA, Nguyen T, et al. Validation of longitudinal DXA changes in body composition from pre- to mid-adolescence using MRI as reference. Journal of Clinical Densitometry. 2011;14(3):340–347. doi: 10.1016/j.jocd.2011.04.005
- Bredella MA, Ghomi RH, Thomas BJ, et al. Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity. 2010;18(11):2227–2233. doi: 10.1038/oby.2010.5 EDN: NZDTDL
- Bilsborough JC, Greenway K, Opar D, et al. The accuracy and precision of DXA for assessing body composition in team sport athletes. Journal of Sports Sciences. 2014;32(19):1821–1828. doi: 10.1080/02640414.2014.926380
- Lee K, Shin Y, Huh J, et al. Recent issues on body composition imaging for sarcopenia evaluation. Korean Journal of Radiology. 2019;20(2):205. doi: 10.3348/kjr.2018.0479
- Bauer J, Morley JE, Schols AMWJ, et al. Sarcopenia: a time for action. An SCWD position paper. Journal of Cachexia, Sarcopenia and Muscle. 2019;10(5):956–961. doi: 10.1002/jcsm.12483
- Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico. American Journal of Epidemiology. 1998;147(8):755–763. doi: 10.1093/oxfordjournals.aje.a009520 EDN: IKMFOZ
- Guglielmi G, Ponti F, Agostini M, et al. The role of DXA in sarcopenia. Aging Clinical and Experimental Research. 2016;28(6):1047–1060. doi: 10.1007/s40520-016-0589-3 EDN: HRITUO
- Schweighofer N, Colantonio C, Haudum CW, et al. DXA-derived indices in the characterisation of sarcopenia. Nutrients. 2021;14(1):186. doi: 10.3390/nu14010186 EDN: KJWNOX
- Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. Journal of the American Geriatrics Society. 2002;50(5):889–896. doi: 10.1046/j.1532-5415.2002.50216.x EDN: BAMXZD
- Kim YS, Lee Y, Chung YS, et al. Prevalence of sarcopenia and sarcopenic obesity in the Korean population based on the Fourth Korean National Health and Nutritional Examination Surveys. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2012;67(10):1107–1113. doi: 10.1093/gerona/gls071
- Imboden MT, Swartz AM, Finch HW, et al. Reference standards for lean mass measures using GE dual energy x-ray absorptiometry in Caucasian adults. PLOS ONE. 2017;12(4):e0176161. doi: 10.1371/journal.pone.0176161
- Alkahtani SA. A cross-sectional study on sarcopenia using different methods: reference values for healthy Saudi young men. BMC Musculoskeletal Disorders. 2017;18(1):119. doi: 10.1186/s12891-017-1483-7 EDN: IDHMXM
- Sanada K, Miyachi M, Tanimoto M, et al. A cross-sectional study of sarcopenia in Japanese men and women: reference values and association with cardiovascular risk factors. European Journal of Applied Physiology. 2010;110(1):57–65. doi: 10.1007/s00421-010-1473-z EDN: JBDBBS
- Diano D, Ponti F, Guerri S, et al. Upper and lower limbs composition: a comparison between anthropometry and dual-energy X-ray absorptiometry in healthy people. Archives of Osteoporosis. 2017;12(1):78. doi: 10.1007/s11657-017-0374-8
- Baracos VE, Arribas L. Sarcopenic obesity: hidden muscle wasting and its impact for survival and complications of cancer therapy. Annals of Oncology. 2018;29:ii1–ii9. doi: 10.1093/annonc/mdx810
- Chiles Shaffer N, Ferrucci L, Shardell M, et al. Agreement and predictive validity using less-conservative foundation for the National Institutes of Health Sarcopenia Project Weakness Cutpoints. Journal of the American Geriatrics Society. 2016;65(3):574–579. doi: 10.1111/jgs.14706
- Cawthon PM, Peters KW, Shardell MD, et al. Cutpoints for low appendicular lean mass that identify older adults with clinically significant weakness. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2014;69(5):567–575. doi: 10.1093/gerona/glu023
- Kyle UG, Genton L, Hans D, et al. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. European Journal of Clinical Nutrition. 2001;55(8):663–672. doi: 10.1038/sj.ejcn.1601198
- Bazzocchi A, Filonzi G, Ponti F, et al. Ultrasound: Which role in body composition? European Journal of Radiology. 2016;85(8):1469–1480. doi: 10.1016/j.ejrad.2016.04.005 EDN: WVPHNV
- Bazzocchi A, Filonzi G, Ponti F, et al. The Role of Ultrasonography in the evaluation of abdominal fat. Academic Radiology. 2013;20(10):1278–1285. doi: 10.1016/j.acra.2013.07.009
- Ticinesi A, Meschi T, Narici MV, et al. Muscle ultrasound and sarcopenia in older individuals: a clinical perspective. Journal of the American Medical Directors Association. 2017;18(4):290–300. doi: 10.1016/j.jamda.2016.11.013
- Sanada K, Kearns CF, Midorikawa T, Abe T. Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. European Journal of Applied Physiology. 2005;96(1):24–31. doi: 10.1007/s00421-005-0061-0 EDN: OIBMAZ
- Narici MV, Maganaris CN, Reeves ND, Capodaglio P. Effect of aging on human muscle architecture. Journal of Applied Physiology. 2003;95(6):2229–2234. doi: 10.1152/japplphysiol.00433.2003
- Kwah LK, Pinto RZ, Diong J, Herbert RD. Reliability and validity of ultrasound measurements of muscle fascicle length and pennation in humans: a systematic review. Journal of Applied Physiology. 2013;114(6):761–769. doi: 10.1152/japplphysiol.01430.2011
- Bolsterlee B, Gandevia SC, Herbert RD. Ultrasound imaging of the human medial gastrocnemius muscle: how to orient the transducer so that muscle fascicles lie in the image plane. Journal of Biomechanics. 2016;49(7):1002–1008. doi: 10.1016/j.jbiomech.2016.02.014
- Körting C, Schlippe M, Petersson S, et al. In vivo muscle morphology comparison in post-stroke survivors using ultrasonography and diffusion tensor imaging. Scientific Reports. 2019;9(1):1–11. doi: 10.1038/s41598-019-47968-x EDN: ZDKOHT
- Guerri S, Mercatelli D, Aparisi Gómez MP, et al. Quantitative imaging techniques for the assessment of osteoporosis and sarcopenia. Quantitative Imaging in Medicine and Surgery. 2018;8(1):60–85. doi: 10.21037/qims.2018.01.05 EDN: YGBWVN
- Peng YC, Wu CH, Tien YW, et al. Preoperative sarcopenia is associated with poor overall survival in pancreatic cancer patients following pancreaticoduodenectomy. European Radiology. 2020;31(4):2472–2481. doi: 10.1007/s00330-020-07294-7 EDN: QEVZUE
- Ceniccola GD, Castro MG, Piovacari SMF, et al. Current technologies in body composition assessment: advantages and disadvantages. Nutrition. 2019;62:25–31. doi: 10.1016/j.nut.2018.11.028
- Tolonen A, Pakarinen T, Sassi A, et al. Methodology, clinical applications, and future directions of body composition analysis using computed tomography (CT) images: A review. European Journal of Radiology. 2021;145:109943. doi: 10.1016/j.ejrad.2021.109943 EDN: ZGMEUC
- Mitsiopoulos N, Baumgartner RN, Heymsfield SB, et al. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. Journal of Applied Physiology. 1998;85(1):115–122. doi: 10.1152/jappl.1998.85.1.115
- Wang FZ, Sun H, Zhou J, et al. Reliability and validity of abdominal skeletal muscle area measurement using magnetic resonance imaging. Academic Radiology. 2021;28(12):1692–1698. doi: 10.1016/j.acra.2020.09.013 EDN: ZAJXXO
- Faron A, Sprinkart AM, Kuetting DLR, et al. Body composition analysis using CT and MRI: intra-individual intermodal comparison of muscle mass and myosteatosis. Scientific Reports. 2020;10(1):11756. doi: 10.1038/s41598-020-68797-3 EDN: BBLUJW
- Almada-Correia I, Neves PM, Mäkitie A, Ravasco P. Body composition evaluation in head and neck cancer patients: a review. Frontiers in Oncology. 2019;9:1112. doi: 10.3389/fonc.2019.01112
- Matsuyama R, Maeda K, Yamanaka Y, et al. Assessing skeletal muscle mass based on the cross-sectional area of muscles at the 12th thoracic vertebra level on computed tomography in patients with oral squamous cell carcinoma. Oral Oncology. 2021;113:105126. doi: 10.1016/j.oraloncology.2020.105126 EDN: EZAWPC
- Troschel AS, Troschel FM, Best TD, et al. Computed tomography–based body composition analysis and its role in lung cancer care. Journal of Thoracic Imaging. 2020;35(2):91–100. doi: 10.1097/RTI.0000000000000428 EDN: OCZDGG
- Amini B, Boyle SP, Boutin RD, Lenchik L. Approaches to assessment of muscle mass and myosteatosis on computed tomography: a systematic review. The Journals of Gerontology: Series A. 2019;74(10):1671–1678. doi: 10.1093/gerona/glz034
- Boutin RD, Yao L, Canter RJ, Lenchik L. Sarcopenia: current concepts and imaging implications. American Journal of Roentgenology. 2015;205(3):W255–W266. doi: 10.2214/AJR.15.14635
- Clynes MA, Edwards MH, Buehring B, et al. Definitions of sarcopenia: associations with previous falls and fracture in a population sample. Calcified Tissue International. 2015;97(5):445–452. doi: 10.1007/s00223-015-0044-z EDN: PWIAFZ
- Sousa AS, Guerra RS, Fonseca I, et al. Sarcopenia and length of hospital stay. European Journal of Clinical Nutrition. 2015;70(5):595–601. doi: 10.1038/ejcn.2015.207
- Tyrovolas S, Koyanagi A, Olaya B, et al. The role of muscle mass and body fat on disability among older adults: A cross-national analysis. Experimental Gerontology. 2015;69:27–35. doi: 10.1016/j.exger.2015.06.002 EDN: USFYDJ
- Schaap LA, van Schoor NM, Lips P, Visser M. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: the longitudinal aging study amsterdam. The Journals of Gerontology: Series A. 2017;73(9):1199–1204. doi: 10.1093/gerona/glx245
- Tang TC, Hwang AC, Liu LK, et al. FNIH-defined sarcopenia predicts adverse outcomes among community-dwelling older people in taiwan: results from i-lan longitudinal aging study. The Journals of Gerontology: Series A. 2017;73(6):828–834. doi: 10.1093/gerona/glx148
- Bianchi L, Abete P, Bellelli G, et al; for the GLISTEN Group Investigators. Prevalence and clinical correlates of sarcopenia, identified according to the EWGSOP definition and diagnostic algorithm, in hospitalized older people: The GLISTEN Study. The Journals of Gerontology: Series A. 2017;72(11):1575–1581. doi: 10.1093/gerona/glw343
- Kroker A, Zhu Y, Manske SL, et al. Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT. Bone. 2017;97:43–48. doi: 10.1016/j.bone.2016.12.015
- Erlandson MC, Wong AKO, Szabo E, et al. Muscle and myotendinous tissue properties at the distal tibia as assessed by high-resolution peripheral quantitative computed tomography. Journal of Clinical Densitometry. 2017;20(2):226–232. doi: 10.1016/j.jocd.2016.10.005
- Hildebrand KN, Sidhu K, Gabel L, et al. The Assessment of skeletal muscle and cortical bone by second-generation HR-pQCT at the Tibial Midshaft. Journal of Clinical Densitometry. 2021;24(3):465–473. doi: 10.1016/j.jocd.2020.11.001 EDN: TZJABG
- Chow SKH, van Mourik M, Hung VWY, et al. HR-pQCT for the evaluation of muscle quality and intramuscular fat infiltration in ageing skeletal muscle. Journal of Personalized Medicine. 2022;12(6):1016. doi: 10.3390/jpm12061016 EDN: HTRGSW
- Aparisi Gómez MP, Ayuso Benavent C, Simoni P, et al. Imaging of bone marrow: from science to practice. Seminars in Musculoskeletal Radiology. 2022;26(04):396–411. doi: 10.1055/s-0042-1745803
- Aparisi Gómez MP, Ayuso Benavent C, Simoni P, et al. Fat and bone: the multiperspective analysis of a close relationship. Quantitative Imaging in Medicine and Surgery. 2020;10(8):1614–1635. doi: 10.21037/qims.2020.01.11 EDN: FCYWQZ
- Gloor M, Fasler S, Fischmann A, et al. Quantification of fat infiltration in oculopharyngeal muscular dystrophy: Comparison of three MR imaging methods. Journal of Magnetic Resonance Imaging. 2010;33(1):203–210. doi: 10.1002/jmri.22431
- Borga M, Ahlgren A, Romu T, et al. Reproducibility and repeatability of MRI-based body composition analysis. Magnetic Resonance in Medicine. 2020;84(6):3146–3156. doi: 10.1002/mrm.28360 EDN: AYEETH
- Baum T, Cordes C, Dieckmeyer M, et al. MR-based assessment of body fat distribution and characteristics. European Journal of Radiology. 2016;85(8):1512–1518. doi: 10.1016/j.ejrad.2016.02.013
- Tyagi A, Yeganeh O, Levin Y, et al. Intra- and inter-examination repeatability of magnetic resonance spectroscopy, magnitude-based MRI, and complex-based MRI for estimation of hepatic proton density fat fraction in overweight and obese children and adults. Abdominal Imaging. 2015;40(8):3070–3077. doi: 10.1007/s00261-015-0542-5 EDN: MALVVP
- Eggers H, Börnert P. Chemical shift encoding-based water–fat separation methods. Journal of Magnetic Resonance Imaging. 2014;40(2):251–268. doi: 10.1002/jmri.24568
- Thomas EL, Fitzpatrick JA, Malik SJ, et al. Whole body fat: Content and distribution. Progress in Nuclear Magnetic Resonance Spectroscopy. 2013;73:56–80. doi: 10.1016/j.pnmrs.2013.04.001 EDN: SQMCPV
- Shen W, Punyanitya M, Wang ZM, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. Journal of Applied Physiology. 2004;97(6):2333–2338. doi: 10.1152/japplphysiol.00744.2004
- Shen W, Punyanitya M, Wang ZM, et al. Visceral adipose tissue: relations between single-slice areas and total volume. The American Journal of Clinical Nutrition. 2004;80(2):271–278. doi: 10.1093/ajcn/80.2.271
- Shen W, Punyanitya M, Chen J, et al. Visceral adipose tissue: relationships between single slice areas at different locations and obesity-related health risks. International Journal of Obesity. 2006;31(5):763–769. doi: 10.1038/sj.ijo.0803474
- Irlbeck T, Massaro JM, Bamberg F, et al. Association between single-slice measurements of visceral and abdominal subcutaneous adipose tissue with volumetric measurements: the Framingham Heart Study. International Journal of Obesity. 2010;34(4):781–787. doi: 10.1038/ijo.2009.279
- Hu HH, Chen J, Shen W. Segmentation and quantification of adipose tissue by magnetic resonance imaging. Magnetic Resonance Materials in Physics, Biology and Medicine. 2015;29(2):259–276. doi: 10.1007/s10334-015-0498-z EDN: YSWEEO
- Schweitzer L, Geisler C, Pourhassan M, et al. What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? The American Journal of Clinical Nutrition. 2015;102(1):58–65. doi: 10.3945/ajcn.115.111203
- Yip C, Dinkel C, Mahajan A, et al. Imaging body composition in cancer patients: visceral obesity, sarcopenia and sarcopenic obesity may impact on clinical outcome. Insights into Imaging. 2015;6(4):489–497. doi: 10.1007/s13244-015-0414-0 EDN: BGDHDG
- Noumura Y, Kamishima T, Sutherland K, Nishimura H. Visceral adipose tissue area measurement at a single level: can it represent visceral adipose tissue volume? The British Journal of Radiology. 2017;90(1077):20170253. doi: 10.1259/bjr.20170253
- Kuk JL, Church TS, Blair SN, Ross R. Measurement site and the association between visceral and abdominal subcutaneous adipose tissue with metabolic risk in women. Obesity. 2010;18(7):1336–1340. doi: 10.1038/oby.2009.414 EDN: NZCTTB
- Kullberg J, Ahlström H, Johansson L, Frimmel H. Automated and reproducible segmentation of visceral and subcutaneous adipose tissue from abdominal MRI. International Journal of Obesity. 2007;31(12):1806–1817. doi: 10.1038/sj.ijo.0803671
- Fallah F, Machann J, Martirosian P, et al. Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla. Magnetic Resonance Materials in Physics, Biology and Medicine. 2016;30(2):139–151. doi: 10.1007/s10334-016-0588-6 EDN: ZPSMEQ
- Kirchhoff K, Kantartzis K, Machann J, et al. Impact of different fat depots on insulin sensitivity: predominant role of liver fat. Journal of Diabetes Science and Technology. 2007;1(5):753–759. doi: 10.1177/193229680700100521
- West J, Romu T, Thorell S, et al. Precision of MRI-based body composition measurements of postmenopausal women. PLOS ONE. 2018;13(2):e0192495. doi: 10.1371/journal.pone.0192495
- Machann J, Thamer C, Stefan N, et al. Follow-up whole-body assessment of adipose tissue compartments during a lifestyle intervention in a large cohort at increased risk for type 2 diabetes. Radiology. 2010;257(2):353–363. doi: 10.1148/radiol.10092284
- Boettcher M, Machann J, Stefan N, et al. Intermuscular adipose tissue (IMAT): Association with other adipose tissue compartments and insulin sensitivity. Journal of Magnetic Resonance Imaging. 2009;29(6):1340–1345. doi: 10.1002/jmri.21754
- Prado CMM, Heymsfield SB. Lean tissue imaging. Journal of Parenteral and Enteral Nutrition. 2014;38(8):940–953. doi: 10.1177/0148607114550189 EDN: UVANLJ
- Aparisi Gómez MP, Weidekamm C, Aparisi F, Bazzocchi A. Sports and metabolic bone disease. Seminars in Musculoskeletal Radiology. 2020;24(03):277–289. doi: 10.1055/s-0040-1709483 EDN: DKIUHW
- Macaluso A, Nimmo MA, Foster JE, et al. Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women. Muscle & Nerve. 2002;25(6):858–863. doi: 10.1002/mus.10113
- Wang B, Torriani M. Artificial Intelligence in the Evaluation of Body Composition. Seminars in Musculoskeletal Radiology. 2020;24(01):030–037. doi: 10.1055/s-0039-3400267 EDN: GTBGCX
Дополнительные файлы





