机器学习方法在情感障碍中的应用前景

封面图片

如何引用文章

全文:

详细

精神障碍是当今最重要的医学和社会问题之一。目前,大约有9.7亿人患有精神障碍,其中超过3亿人被诊断为抑郁症或双相情感障碍。近年来,数字技术,尤其是人工智能,特别是机器学习和深度学习,得到了迅速发展。鉴于其在精神病学中的应用日益受到关注,并且开发新的精神卫生服务方法日益成为迫切问题。

本文展示了人工智能技术在临床实践中的当前和未来发展方向,特别是应用于抑郁症和双相情感障碍患者的实例。文献检索在2024年1月至2月期间,通过PubMed、Google Scholar和eLibrary等搜索引擎进行,使用俄文的关键词包括:“психиатрия” (精神病学), “психическое здоровье” (心理健康), “психическое расстройство” (精神障碍), “депрессия” (抑郁症), “депрессивный эпизод” (抑郁发作), “рекуррентное депрессивное расстройство” (复发性抑郁障碍), “биполярное расстройство” (双相情感障碍), “машинное обучение” (机器学习), “глубокое обучение” (深度学习) 和 “искусственный интеллект” (人工智能);以及英文关键词:“psychiatry” (精神病学)、“mental health” (心理健康)、“psychiatric disorder” (精神障碍)、“depression” (抑郁症)、“depressive episode” (抑郁发作)、“major depressive disorder” (重度抑郁症)、“bipolar disorder” (双相情感障碍)、“machine learning” (机器学习)、“deep learning” (深度学习)、“artificial intelligence” (人工智能)。排除了关于人工智能技术应用于抑郁症和双相情感障碍患者的文章,以及讨论其在精神病学中应用困难的综述文章。所选文献为过去10年内的俄语和英语出版物。最常用于情感障碍患者诊断的机器学习模型基于神经影像学(主要是磁共振成像和脑电图)、文本、音频、视频数据,以及电子设备、分子遗传学和临床指标。模型训练使用单模态或多模态数据集。需要指出的是,大多数分析过的研究存在显著缺陷,阻碍了人工智能技术在临床实践中的应用。这些缺陷包括:样本量小、缺乏代表性和标准化、模型中存在“噪声”以及相关变量的干扰,缺乏在独立样本上的验证。因此,机器学习方法在早期诊断情感障碍发作以及预测治疗反应方面展现了前景。然而,它们在临床实践中的应用仍面临一系列限制,主要与验证不足相关。为了解决这一问题,需要进行精心设计的前瞻性队列研究,并建立广泛的高质量数据集和模型库,以发现变量之间的新关联。

作者简介

Ekaterina S. Mosolova

V. Serbsky National Medical Research Centre for Psychiatry and Narcology

Email: kata_mosolova@mail.ru
ORCID iD: 0000-0003-2324-2814
SPIN 代码: 6077-3386
俄罗斯联邦, Moscow

Alexander E. Alfimov

Sechenov First Moscow State Medical University

Email: alex.alfimov@gmail.com
ORCID iD: 0000-0002-9064-7881
SPIN 代码: 4354-7081

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Elena G. Kostyukova

V. Serbsky National Medical Research Centre for Psychiatry and Narcology

Email: ekostukova@gmail.com
ORCID iD: 0000-0002-9830-1412
SPIN 代码: 6510-3969

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Sergey N. Mosolov

V. Serbsky National Medical Research Centre for Psychiatry and Narcology; Russian Medical Academy of Continuous Professional Education

编辑信件的主要联系方式.
Email: profmosolov@mail.ru
ORCID iD: 0000-0002-5749-3964
SPIN 代码: 3009-9162

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow; Moscow

参考

  1. Oleynikova TA, Barybina ES. Regional differences in indicators of general and primary mental disorders in Russia. Current problems of health care and medical statistics. 2022;(3): 679–692. doi: 10.24412/2312-2935-2022-3-679-692 EDN: ODCFHO
  2. World Health Organisation. World mental health report: transforming mental health for all [Internet]. Geneva: WHO; 2022 [cited 2024 Jun 5]. Available from: https://iris.who.int/bitstream/handle/10665/356119/9789240049338-eng.pdf?sequence=1
  3. Chekroud AM, Bondar J, Delgadillo J, et al. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry. 2021;20(2):154–170. doi: 10.1002/wps.20882 EDN: WODVXR
  4. Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. American Journal of Psychiatry. 2006;163(11):1905–1917. doi: 10.1176/ajp.2006.163.11.1905 EDN: IVQWHF
  5. Hirschfeld RM. Differential diagnosis of bipolar disorder and major depressive disorder. Journal of Affective Disorders. 2014;169(Suppl. 1):S12–S16. doi: 10.1016/S0165-0327(14)70004-7
  6. Trivedi MH, Rush AJ, Wisniewski SR, et al; STAR*D Study Team. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. American Journal of Psychiatry. 2006;163(1):28–40. doi: 10.1176/appi.ajp.163.1.28
  7. Souery D, Serretti A, Calati R, et al. Switching antidepressant class does not improve response or remission in treatment-resistant depression. Journal of Clinical Psychopharmacology. 2011;31(4):512–516. doi: 10.1097/JCP.0b013e3182228619 EDN: ZUCAGB
  8. 20 years of precision medicine in oncology. The Lancet. 2021;397(10287):1781. doi: 10.1016/S0140-6736(21)01099-0 EDN: MWXXOM
  9. Tsvetkova LA, Cherchenko OV. Big data technology in medicine and healthcare in Russia and in the world. Medical Doctor and IT. 2016;(3):60–73. EDN: WMPOXN
  10. Chen ZhS, Kulkarni PP, Galatzer-Levy IR, et al. Modern views of machine learning for precision psychiatry. Patterns. 2022;3(11):100602. doi: 10.1016/j.patter.2022.100602 EDN: IQJLGK
  11. Koutsouleris N, Hauser TU, Skvortsova V, De Choudhury M. From promise to practice: towards the realisation of AI-informed mental health care. The Lancet Digital Health. 2022;4(11):e829–e840. doi: 10.1016/S2589-7500(22)00153-4 EDN: WQOPTS
  12. Passos IC, Ballester P, Rabelo-da-Ponte FD, Kapczinski F. Precision psychiatry: the future is now. The Canadian Journal of Psychiatry. 2021;67(1):21–25. doi: 10.1177/0706743721998044 EDN: TEGSTI
  13. Doraiswamy PM, Blease Ch, Bodner K. Artificial intelligence and the future of psychiatry: Insights from a global physician survey. Artificial Intelligence in Medicine. 2020;102:101753. doi: 10.1016/j.artmed.2019.101753 EDN: HCXKRN
  14. Rogan J, Bucci S, Firth J. Health care professionals’ views on the use of passive sensing, AI, and machine learning in mental health care: systematic review with meta-synthesis. JMIR Mental Health. 2024;11:e49577. doi: 10.2196/49577 EDN: GISVDP
  15. Monteith S, Glenn T, Geddes JR, et al. Artificial intelligence and increasing misinformation. The British Journal of Psychiatry. 2023;224(2):33–35. doi: 10.1192/bjp.2023.136 EDN: AHHPXI
  16. Harris E. Machine learning algorithms failed to find depression biomarker. JAMA. 2024;331(7):554. doi: 10.1001/jama.2023.28339 EDN: JYXHQB
  17. Sahoo JP, Narayan BN, Santi NS. The future of psychiatry with artificial intelligence: can the man-machine duo redefine the tenets? Consortium Psychiatricum. 2023;4(3):72–76. doi: 10.17816/CP13626 EDN: KTPGMU
  18. Ray A, Bhardwaj A, Malik YK, et al. Artificial intelligence and psychiatry: an overview. Asian Journal of Psychiatry. 2022;70:103021. doi: 10.1016/j.ajp.2022.103021 EDN: GBXYZG
  19. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge, MA: MIT Press; 2016.
  20. Chollet F. Deep learning with python. New York: Manning Publications; 2017.
  21. Shalev-Shwartz S, Ben-David S. Understanding machine learning: from theory to algorithms. New York: Cambridge University Press; 2014. doi: 10.1017/CBO9781107298019
  22. Orrù G, Monaro M, Conversano C, et al. Machine Learning in Psychometrics and Psychological Research. Frontiers in Psychology. 2020;10:. doi: 10.3389/fpsyg.2019.02970 EDN: SUIVNX
  23. Nielsen AN, Barch DM, Petersen SE, et al. Machine Learning With Neuroimaging: Evaluating Its Applications in Psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2020;5(8):791–798. doi: 10.1016/j.bpsc.2019.11.007 EDN: OXBXJE
  24. Janssen RJ, Mourão-Miranda J, Schnack HG. Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2018;3(9):798–808. doi: 10.1016/j.bpsc.2018.04.004 EDN: VFTDSS
  25. Gao S, Calhoun VD, Sui J. Machine learning in major depression: From classification to treatment outcome prediction. CNS Neuroscience & Therapeutics 2018;24(11):1037–1052. doi: 10.1111/cns.13048 EDN: YIYUHJ
  26. Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14. doi: 10.1167/tvst.9.2.14
  27. Chapelle O, Scholkopf B, Zien A. Semi-supervised learning. London: The MIT press; 2006. doi: 10.7551/mitpress/9780262033589.001.0001
  28. Casalino G, Castellano G, Hryniewicz O, et al. Semi-supervised vs. supervised learning for mental health monitoring: a case study on bipolar disorder. International Journal of Applied Mathematics and Computer Science. 2023;33(3):419–428. doi: 10.34768/amcs-2023-0030 EDN: GOPANB
  29. Zhang YJ, Hu LSh. Fault propagation inference based on a graph neural network for steam turbine systems. Energies. 2021;14(2):309. doi: 10.3390/en14020309 EDN: NNNPCK
  30. Pelin H, Ising M, Stein F, et al. Identification of transdiagnostic psychiatric disorder subtypes using unsupervised learning. Neuropsychopharmacology. 2021;46(11):1895–1905. doi: 10.1038/s41386-021-01051-0 EDN: UJLLNA
  31. James G, Witten D, Hastie T, et al. Unsupervised Learning. In: James G, Witten D, Hastie T, et al. An introduction to statistical learning: with applications in Python. Switzerland: Springer; 2023. P. 503–556. doi: 10.1007/978-3-031-38747-0_12
  32. Koppe G, Meyer-Lindenberg A, Durstewitz D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology 2020;46(1):176–190. doi: 10.1038/s41386-020-0767-z EDN: ZLJVOQ
  33. Thompson PM, Andreassen OA, Arias-Vasquez A, et al. ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide. NeuroImage. 2017;145(Pt B):389–408. doi: 10.1016/j.neuroimage.2015.11.057 EDN: YUUHXZ
  34. Abrol A, Fu Z, Salman M, et al. Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning. Nature Communications. 2021;12(1):353. doi: 10.1038/s41467-020-20655-6 EDN: IKGWJA
  35. Quaak M, van de Mortel L, Thomas RM, van Wingen G. Deep learning applications for the classification of psychiatric disorders using neuroimaging data: systematic review and meta-analysis. NeuroImage: Clinical. 2021;30:102584. doi: 10.1016/j.nicl.2021.102584 EDN: HPDNMR
  36. Squires M, Tao X, Elangovan S, et al. Deep learning and machine learning in psychiatry: a survey of current progress in depression detection, diagnosis and treatment. Brain Informatics. 2023;10(1):10. doi: 10.1186/s40708-023-00188-6 EDN: TPRDEE
  37. Castelvecchi D. Can we open the black box of AI? Nature. 2016;538(7623):20–23. doi: 10.1038/538020a
  38. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence. 2019;1(5):206–215. doi: 10.1038/s42256-019-0048-x
  39. Briganti G. Artificial intelligence in psychiatry. Psychiatria Danubina. 2023;35(Suppl. 2):15–19.
  40. Lin E, Lin ChH, Lane HYu. Precision psychiatry applications with pharmacogenomics: artificial intelligence and machine learning approaches. International Journal of Molecular Sciences. 2020;21(3):969. doi: 10.3390/ijms21030969 EDN: ZHSDMD
  41. Sajno E, Bartolotta S, Tuena C, et al. Machine learning in biosignals processing for mental health: a narrative review. Frontiers in Psychology. 2023;13: doi: 10.3389/fpsyg.2022.1066317 EDN: LJZGQV
  42. Meisler SL, Kahana MJ, Ezzyat Y. Does data cleaning improve brain state classification? Journal of Neuroscience Methods. 2019;328:108421. doi: 10.1016/j.jneumeth.2019.108421 EDN: ETRDMP
  43. Bzdok D, Meyer-Lindenberg A. Machine learning for precision psychiatry: opportunities and challenges. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2018;3(3):223–230. doi: 10.1016/j.bpsc.2017.11.007
  44. Brossollet I, Gallet Q, Favre P, Houenou J. Machine learning and brain imaging for psychiatric disorders: new perspectives. In: Colliot O, editor. Machine learning for brain disorders. New York: Human New York; 2023. P. 1009–1036. doi: 10.1007/978-1-0716-3195-9_32
  45. Zeng LL, Shen H, Liu L, et al. Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain. 2012;135(5):1498–1507. doi: 10.1093/brain/aws059
  46. Liu Yu, Pu Ch, Xia Sh, et al. Machine learning approaches for diagnosing depression using EEG: a review. Translational Neuroscience. 2022;13(1):224–235. doi: 10.1515/tnsci-2022-0234 EDN: RCXDYH
  47. Wu CT, Huang HC, Huang S, et al. Resting-State EEG Signal for major depressive disorder detection: a systematic validation on a large and diverse dataset. Biosensors. 2021;11(12):499. doi: 10.3390/bios11120499 EDN: KVWWIN
  48. Claude LA, Houenou J, Duchesnay E, Favre P. Will machine learning applied to neuroimaging in bipolar disorder help the clinician? A critical review and methodological suggestions. Bipolar Disorders. 2020;22(4):334–355. doi: 10.1111/bdi.12895 EDN: KEDUAL
  49. Mwangi B, Wu MJ, Bauer IE, et al. Predictive classification of pediatric bipolar disorder using atlas-based diffusion weighted imaging and support vector machines. Psychiatry Research: Neuroimaging. 2015;234(2):265–271. doi: 10.1016/j.pscychresns.2015.10.002
  50. Besga A, Termenon M, Graña M, et al. Discovering Alzheimer's disease and bipolar disorder white matter effects building computer aided diagnostic systems on brain diffusion tensor imaging features. Neuroscience Letters. 2012;520(1):71–76. doi: 10.1016/j.neulet.2012.05.033
  51. Jie NF, Zhu MH, Ma XY, et al. Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data. IEEE Transactions on Autonomous Mental Development. 2015;7(4):320–331. doi: 10.1109/TAMD.2015.2440298
  52. Nunes A, Schnack HG, Ching CRK, et al; for the ENIGMA Bipolar Disorders Working Group. Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA bipolar disorders working group. Molecular Psychiatry. 2018;25(9):2130–2143. doi: 10.1038/s41380-018-0228-9 EDN: LBYLFZ
  53. Schwarz E, Doan NT, Pergola G, et al; The IMAGEMEND Consortium, Karolinska Schizophrenia Project (KaSP) Consortium. Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Translational Psychiatry. 2019;9(1):12. doi: 10.1038/s41398-018-0225-4 EDN: RIAGYN
  54. Lin K, Shao R, Geng X, et al. Illness, at-risk and resilience neural markers of early-stage bipolar disorder. Journal of Affective Disorders. 2018;238:16–23. doi: 10.1016/j.jad.2018.05.017
  55. Grotegerd D, Suslow T, Bauer J, et al. Discriminating unipolar and bipolar depression by means of fMRI and pattern classification: a pilot study. European Archives of Psychiatry and Clinical Neuroscience. 2012;263(2):119–131. doi: 10.1007/s00406-012-0329-4 EDN: UDZFEB
  56. Vai B, Parenti L, Bollettini I, et al. Predicting differential diagnosis between bipolar and unipolar depression with multiple kernel learning on multimodal structural neuroimaging. European Neuropsychopharmacology. 2020;34:28–38. doi: 10.1016/j.euroneuro.2020.03.008 EDN: FFHKXU
  57. Watts D, Pulice RF, Reilly J, et al. Predicting treatment response using EEG in major depressive disorder: a machine-learning meta-analysis. Translational Psychiatry. 2022;12(1):1–18. doi: 10.1038/s41398-022-02064-z EDN: JQTPLK
  58. Liu F, Guo W, Yu D, et al. Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PLoS ONE. 2012;7(7):e40968. doi: 10.1371/journal.pone.0040968
  59. Jiang R, Abbott CC, Jiang T, et al. SMRI biomarkers predict electroconvulsive treatment outcomes: accuracy with independent data sets. Neuropsychopharmacology. 2017;43(5):1078–1087. doi: 10.1038/npp.2017.165
  60. Wade BSC, Joshi SH, Njau S, et al. Effect of electroconvulsive therapy on striatal morphometry in major depressive disorder. Neuropsychopharmacology. 2016;41(10):2481–2491. doi: 10.1038/npp.2016.48
  61. Fleck DE, Ernest N, Adler CM, et al. Prediction of lithium response in first-episode mania using the LITHium intelligent agent (LITHIA): pilot data and proof-of-concept. Bipolar Disorders. 2017;19(4):259–272. doi: 10.1111/bdi.12507
  62. Drysdale AT, Grosenick L, Downar J, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine. 2016;23(1):28–38. doi: 10.1038/nm.4246
  63. Wu MJ, Mwangi B, Bauer IE, et al. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. NeuroImage. 2017;145(Pt B):254–264. doi: 10.1016/j.neuroimage.2016.02.016 EDN: YVYGFJ
  64. Cearns M, Opel N, Clark S, et al. Predicting rehospitalization within 2 years of initial patient admission for a major depressive episode: a multimodal machine learning approach. Translational Psychiatry. 2019;9(1):285. doi: 10.1038/s41398-019-0615-2 EDN: LXKHGX
  65. Winter NR, Blanke J, Leenings R, et al. A systematic evaluation of machine learning–based biomarkers for major depressive disorder. JAMA Psychiatry. 2024;81(4):386. doi: 10.1001/jamapsychiatry.2023.5083 EDN: KSKMUN
  66. Schulz MA, Yeo BTT, Vogelstein JT, et al. Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets. Nature Communications. 2020;11(1):1–15. doi: 10.1038/s41467-020-18037-z EDN: RMGYTD
  67. Le Glaz A, Haralambous Ya, Kim-Dufor DH, et al. Machine learning and natural language processing in mental health: systematic review. Journal of Medical Internet Research. 2021;23(5):e15708. doi: 10.2196/15708 EDN: AYMEHT
  68. De Choudhury M, Gamon M, Counts S, Horvitz E. Predicting depression via social media. Proceedings of the International AAAI Conference on Web and Social Media. 2021;7(1):128–137. doi: 10.1609/icwsm.v7i1.14432 EDN: ZCZNTB
  69. Reece AG, Reagan AJ, Lix KLM, et al. Forecasting the onset and course of mental illness with Twitter data. Scientific Reports. 2017;7(1):13006. doi: 10.1038/s41598-017-12961-9
  70. Tsugawa S, Kikuchi Y, Kishino F, et al. Recognizing depression from Twitter activity. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. New York, 2015. New York: Association for Computing Machinery; 2015. P. 3187–3196. doi: 10.1145/2702123.2702280
  71. Eichstaedt JC, Smith RJ, Merchant RM, et al. Facebook language predicts depression in medical records. Proceedings of the National Academy of Sciences. 2018;115(44):11203–11208. doi: 10.1073/pnas.1802331115 EDN: ZJVQWC
  72. Ahmad Wani M, ELAffendi MA, Shakil KA, et al. Depression screening in humans with AI and deep learning techniques. IEEE Transactions on Computational Social Systems. 2023;10(4):2074–2089. doi: 10.1109/TCSS.2022.3200213 EDN: TWZLUP
  73. Rosa RL, Schwartz GM, Ruggiero WV, Rodriguez DZ. A knowledge-based recommendation system that includes sentiment analysis and deep learning. IEEE Transactions on Industrial Informatics. 2019;15(4):2124–2135. doi: 10.1109/TII.2018.2867174
  74. Rumshisky A, Ghassemi M, Naumann T, et al. Predicting early psychiatric readmission with natural language processing of narrative discharge summaries. Translational Psychiatry. 2016;6(10):e921. doi: 10.1038/tp.2015.182
  75. Edgcomb J, Shaddox T, Hellemann G, Brooks JO. High-risk phenotypes of early psychiatric readmission in bipolar disorder with comorbid medical illness. Psychosomatics. 2019;60(6):563–573. doi: 10.1016/j.psym.2019.05.002
  76. Bantilan N, Malgaroli M, Ray B, Hull TD. Just in time crisis response: suicide alert system for telemedicine psychotherapy settings. Psychotherapy Research. 2020;31(3):289–299. doi: 10.1080/10503307.2020.1781952 EDN: LNBXVO
  77. Low DM, Bentley KH, Ghosh SS. Automated assessment of psychiatric disorders using speech: a systematic review. Laryngoscope Investigative Otolaryngology. 2020;5(1):96–116. doi: 10.1002/lio2.354 EDN: DGKCIS
  78. Cummins N, Scherer S, Krajewski J, et al. A review of depression and suicide risk assessment using speech analysis. Speech Communication. 2015;71:10–49. doi: 10.1016/j.specom.2015.03.004
  79. Vázquez-Romero A, Gallardo-Antolín A. Automatic detection of depression in speech using ensemble convolutional neural networks. Entropy. 2020;22(6):688. doi: 10.3390/e22060688 EDN: VAJJXC
  80. Weiner L, Guidi A, Doignon-Camus N, et al. Vocal features obtained through automated methods in verbal fluency tasks can aid the identification of mixed episodes in bipolar disorder. Translational Psychiatry. 2021;11(1):415. doi: 10.1038/s41398-021-01535-z EDN: LPQQSW
  81. Baltrusaitis T, Zadeh A, Lim YC, Morency LP. OpenFace 2.0: facial behavior analysis toolkit. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). Xi’an, 2018 May 15–19. Xi’an: IEEE; 2018. P. 59–66. doi: 10.1109/FG.2018.00019
  82. Ray A, Kumar S, Reddy R, et al. Multi-level attention network using text, audio and video for depression prediction. In: Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop. Nice, 2019 Oct 21. New York: Association for Computing Machinery; 2019. P. 81–88. doi: 10.1145/3347320.3357697
  83. Shao W, You Zh, Liang L, et al. A multi-modal gait analysis-based detection system of the risk of depression. IEEE Journal of Biomedical and Health Informatics. 2022;26(10):4859–4868. doi: 10.1109/JBHI.2021.3122299 EDN: ZGDNXA
  84. Zhu Y, Shang Y, Shao Z, Guo G. Automated depression diagnosis based on deep networks to encode facial appearance and dynamics. IEEE Transactions on Affective Computing. 2018;9(4):578–584. doi: 10.1109/TAFFC.2017.2650899
  85. Birnbaum ML, Abrami A, Heisig S, et al. Acoustic and facial features from clinical interviews for machine learning-based psychiatric diagnosis: algorithm development. JMIR Mental Health. 2022;9(1):e24699. doi: 10.2196/24699 EDN: MMIGWG
  86. Lam G, Dongyan H, Lin W. Context-aware deep learning for multi-modal depression detection. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brightone, 2018 May 12–17. Brightone: IEEE; 2019. P. 3946–3950. doi: 10.1109/ICASSP.2019.8683027
  87. Dibeklioglu H, Hammal Z, Cohn JF. Dynamic multimodal measurement of depression severity using deep autoencoding. IEEE Journal of Biomedical and Health Informatics. 2018;22(2):525–536. doi: 10.1109/JBHI.2017.2676878
  88. Garcia-Ceja E, Riegler M, Nordgreen T, et al. Mental health monitoring with multimodal sensing and machine learning: a survey. Pervasive and Mobile Computing. 2018;51:1–26. doi: 10.1016/j.pmcj.2018.09.003 EDN: VJHZEI
  89. Maatoug R, Oudin A, Adrien V, et al. Digital phenotype of mood disorders: a conceptual and critical review. Frontiers in Psychiatry. 2022;13:1–13. doi: 10.3389/fpsyt.2022.895860 EDN: GUKWZR
  90. Seppälä J, De Vita I, Jämsä T, et al; M-RESIST Group. Mobile phone and wearable sensor-based mHealth approaches for psychiatric disorders and symptoms: systematic review. JMIR Mental Health. 2019;6(2):e9819. doi: 10.2196/mental.9819
  91. Renn BN, Pratap A, Atkins DC, et al. Smartphone-based passive assessment of mobility in depression: challenges and opportunities. Mental Health and Physical Activity. 2018;14:136–139. doi: 10.1016/j.mhpa.2018.04.003
  92. Place S, Blanch-Hartigan D, Rubin C, et al. Behavioral indicators on a mobile sensing platform predict clinically validated psychiatric symptoms of mood and anxiety disorders. Journal of Medical Internet Research. 2017;19(3):e75. doi: 10.2196/jmir.6678
  93. Opoku Asare K, Terhorst Ya, Vega Ju, et al. Predicting depression from smartphone behavioral markers using machine learning methods, hyperparameter optimization, and feature importance analysis: exploratory study. JMIR mHealth and uHealth. 2021;9(7):e26540. doi: 10.2196/26540 EDN: RJIIAK
  94. Razavi R, Gharipour A, Gharipour M. Depression screening using mobile phone usage metadata: a machine learning approach. Journal of the American Medical Informatics Association. 2020;27(4):522–530. doi: 10.1093/jamia/ocz221 EDN: IEEJUL
  95. Yue C, Ware S, Morillo R, et al. Automatic depression prediction using Internet traffic characteristics on smartphones. Smart Health. 2020;18:100137. doi: 10.1016/j.smhl.2020.100137 EDN: JTSCUZ
  96. Saeb S, Zhang M, Karr CJ, et al. Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: an exploratory study. Journal of Medical Internet Research. 2015;17(7):e175. doi: 10.2196/jmir.4273
  97. Tonon AC, Fuchs DFP, Barbosa Gomes W, et al. Nocturnal motor activity and light exposure: objective actigraphy-based marks of melancholic and non-melancholic depressive disorder. Brief report. Psychiatry Research. 2017;258:587–590. doi: 10.1016/j.psychres.2017.08.025
  98. Schulte A, Breiksch T, Brockmann J, Bauer N. Machine learning based classification of depression using motor activity data and autoregressive model. Studies in Health Technology and Informatics. 2022;296:25–32. doi: 10.3233/SHTI220800
  99. Schneider J, Bakštein E, Kolenič M, et al. Motor activity patterns can distinguish between interepisode bipolar disorder patients and healthy controls. CNS Spectrums. 2020;27(1):82–92. doi: 10.1017/S1092852920001777 EDN: HIYLDA
  100. Lyall LM, Sangha N, Zhu X, et al. Subjective and objective sleep and circadian parameters as predictors of depression-related outcomes: a machine learning approach in UK biobank. Journal of Affective Disorders. 2023;335:83–94. doi: 10.1016/j.jad.2023.04.138 EDN: MEFDLM
  101. Jakobsen P, Garcia-Ceja E, Riegler M, et al. Applying machine learning in motor activity time series of depressed bipolar and unipolar patients compared to healthy controls. PLOS ONE. 2020;15(8):e0231995. doi: 10.1371/journal.pone.0231995 EDN: WPAFQM
  102. Carnevali L, Thayer JF, Brosschot JF, Ottaviani C. Heart rate variability mediates the link between rumination and depressive symptoms: a longitudinal study. International Journal of Psychophysiology. 2018;131:131–138. doi: 10.1016/j.ijpsycho.2017.11.002 EDN: YFCYHZ
  103. Chen X, Yang R, Kuang D, et al. Heart rate variability in patients with major depression disorder during a clinical autonomic test. Psychiatry Research. 2017;256:207–211. doi: 10.1016/j.psychres.2017.06.041
  104. Byun S, Kim AY, Jang EH, et al. Entropy analysis of heart rate variability and its application to recognize major depressive disorder: a pilot study. Technology and Health Care. 2019;27(Suppl. 1):407–424. doi: 10.3233/THC-199037
  105. Kuang D, Yang R, Chen X, et al. Depression recognition according to heart rate variability using Bayesian Networks. Journal of Psychiatric Research. 2017;95:282–287. doi: 10.1016/j.jpsychires.2017.09.012 EDN: VPNRAD
  106. Nickels S, Edwards MD, Poole SF, et al. Toward a mobile platform for real-world digital measurement of depression: user-centered design, data quality, and behavioral and clinical modeling. JMIR Mental Health. 2021;8(8):e27589. doi: 10.2196/27589 EDN: YIRTSR
  107. Narziev N, Goh H, Toshnazarov K, et al. STDD: short-term depression detection with passive sensing. Sensors. 2020;20(5):1396. doi: 10.3390/s20051396 EDN: PYUQKL
  108. Cho CH, Lee T, Kim MG, et al. Mood prediction of patients with mood disorders by machine learning using passive digital phenotypes based on the circadian rhythm: prospective observational cohort study. Journal of Medical Internet Research. 2019;21(4):e11029. doi: 10.2196/11029
  109. Maciukiewicz M, Marshe VS, Hauschild AC, et al. GWAS-based machine learning approach to predict duloxetine response in major depressive disorder. Journal of Psychiatric Research. 2018;99:62–68. doi: 10.1016/j.jpsychires.2017.12.009
  110. Athreya AP, Neavin D, Carrillo-Roa T, et al. Pharmacogenomics-driven prediction of antidepressant treatment outcomes: a machine-learning approach with multi-trial replication. Clinical Pharmacology & Therapeutics. 2019;106(4):855–865. doi: 10.1002/cpt.1482
  111. Eugene AR, Masiak J, Eugene B. Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning. F1000Research. 2018;7:474. doi: 10.12688/f1000research.14451.3
  112. Qi B, Fiori LM, Turecki G, Trakadis YJ. Machine learning analysis of blood microRNA data in major depression: a case-control study for biomarker discovery. International Journal of Neuropsychopharmacology. 2020;23(8):505–510. doi: 10.1093/ijnp/pyaa029 EDN: AFSOEL
  113. Lin E, Kuo PH, Liu YL, et al. A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Frontiers in Psychiatry. 2018;9:1–10. doi: 10.3389/fpsyt.2018.00290
  114. Chang B, Choi Y, Jeon M, et al. ARPNet: antidepressant response prediction network for major depressive disorder. Genes. 2019;10(11):907. doi: 10.3390/genes10110907
  115. Bracher-Smith M, Crawford K, Escott-Price V. Machine learning for genetic prediction of psychiatric disorders: a systematic review. Molecular Psychiatry. 2020;26(1):70–79. doi: 10.1038/s41380-020-0825-2 EDN: WJVOFG
  116. Pirooznia M, Seifuddin F, Judy J, et al. Data mining approaches for genome-wide association of mood disorders. Psychiatric Genetics. 2012;22(2):55–61. doi: 10.1097/YPG.0b013e32834dc40d
  117. Thompson DJ, Well D, Selzam S, et al. UK Biobank release and systematic evaluation of optimised polygenic risk scores for 53 diseases and quantitative traits. medRxiv. 2022. doi: 10.1101/2022.06.16.22276246
  118. Acikel C, Aydin Son Y, Celik C, Gul H. Evaluation of novel candidate variations and their interactions related to bipolar disorders: analysis of GWAS data. Neuropsychiatric Disease and Treatment. 2016;12:2997–3004. doi: 10.2147/NDT.S112558 EDN: XZHYZF
  119. Laksshman S, Bhat RR, Viswanath V, Li X. DeepBipolar: identifying genomic mutations for bipolar disorder via deep learning. Human Mutation. 2017;38(9):1217–1224. doi: 10.1002/humu.23272
  120. Wollenhaupt-Aguiar B, Librenza-Garcia D, Bristot G, et al. Differential biomarker signatures in unipolar and bipolar depression: a machine learning approach. Australian & New Zealand Journal of Psychiatry. 2019;54(4):393–401. doi: 10.1177/0004867419888027
  121. Lahat D, Adali T, Jutten C. Multimodal data fusion: an overview of methods, challenges, and prospects. Proceedings of the IEEE. 2015;103(9):1449–1477. doi: 10.1109/JPROC.2015.2460697 EDN: VEUIZL
  122. Sun J, Dong QX, Wang SW, et al. Artificial intelligence in psychiatry research, diagnosis, and therapy. Asian Journal of Psychiatry. 2023;87:103705. doi: 10.1016/j.ajp.2023.103705 EDN: MIEUPR
  123. Zhou L, Pan S, Wang J, Vasilakos AV. Machine learning on big data: opportunities and challenges. Neurocomputing. 2017;237:350–361. doi: 10.1016/j.neucom.2017.01.026
  124. Yamada H, Abe O, Shizukuishi T, et al. Efficacy of distortion correction on diffusion imaging: comparison of FSL eddy and eddy_correct using 30 and 60 directions diffusion encoding. PLoS ONE. 2014;9(11):e112411. doi: 10.1371/journal.pone.0112411
  125. Birkenbihl C, Emon MA, Vrooman H, et al; Alzheimer’s Disease Neuroimaging Initiative. Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia — lessons for translation into clinical practice. EPMA Journal. 2020;11(3):367–376. doi: 10.1007/s13167-020-00216-z EDN: AUZVYR
  126. Fröhlich H, Balling R, Beerenwinkel N, et al. From hype to reality: data science enabling personalized medicine. BMC Medicine. 2018;16(1):1–15. doi: 10.1186/s12916-018-1122-7 EDN: BPHVWT
  127. Riley P. Three pitfalls to avoid in machine learning. Nature. 2019;572(7767):27–29. doi: 10.1038/d41586-019-02307-y
  128. Jobin A, Ienca M, Vayena E. The global landscape of AI ethics guidelines. Nature Machine Intelligence. 2019;1(9):389–399. doi: 10.1038/s42256-019-0088-2 EDN: HDVOGB
  129. Fiske A, Henningsen P, Buyx A. Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. Journal of Medical Internet Research. 2019;21(5):e13216. doi: 10.2196/13216
  130. Mosolov SN. Ethical-deontological problems of therapy of mental disorders. S.S. Korsakov Journal of neurology nd psychiatry. 2023;123(9):7–14. doi: 10.17116/jnevro20231230917 EDN: BYVVTE
  131. Podoplelova ES. Analysis of artificial intelligence methods applied to solving psychiatry problems. Izvestiya SFedU. Engineering sciences. 2022;2(226):180–189. doi: 10.18522/2311-3103-2022-2-180-189 EDN: IMHTOB
  132. Rutherford S, Kia SM, Wolfers T, et al. The normative modeling framework for computational psychiatry. Nature Protocols. 2022;17(7):1711–1734. doi: 10.1038/s41596-022-00696-5 EDN: OBZNLJ
  133. Huys QJM, Browning M, Paulus MP, Frank MJ. Advances in the computational understanding of mental illness. Neuropsychopharmacology. 2020;46(1):3–19. doi: 10.1038/s41386-020-0746-4 EDN: SPYYXJ
  134. Borsboom D. A network theory of mental disorders. World Psychiatry. 2017;16(1):5–13. doi: 10.1002/wps.20375
  135. Briganti G. On the use of Bayesian artificial intelligence for hypothesis generation in psychiatry. Psychiatria Danubina. 2022;34(Suppl. 8):201–206.
  136. Ewbank MP, Cummins R, Tablan V, et al. Understanding the relationship between patient language and outcomes in internet-enabled cognitive behavioural therapy: a deep learning approach to automatic coding of session transcripts. Psychotherapy Research. 2020;31(3):300–312. doi: 10.1080/10503307.2020.1788740 EDN: LQUCCR
  137. Gao Q, Naumann M, Jovanov I, et al. Model-based design of closed loop deep brain stimulation controller using reinforcement learning. In: 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). Sydney, 2020 Apr 21–25. Sydney: IEEE; 2020. P. 108–118. doi: 10.1109/ICCPS48487.2020.00018
  138. Boscardin CK, Gin B, Golde PB, Hauer KE. ChatGPT and generative artificial intelligence for medical education: potential impact and opportunity. Academic Medicine. 2023;99(1):22–27. doi: 10.1097/ACM.0000000000005439 EDN: IAULYR
  139. Mosolov SN. Comparative efficacy of preventive use of lithium carbonate, carbamazepine and sodium valproate in affective and schizoaffective psychoses. Zhurnal Nevropatologii i Psikhiatrii Imeni S.S.Korsakova. 1991;91(4):78–83. (In Russ) EDN: QZCENT

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1

下载 (404KB)

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».