Prospects of machine learning applications in affective disorders
- Авторлар: Mosolova E.S.1, Alfimov A.E.2, Kostyukova E.G.1, Mosolov S.N.1,3
-
Мекемелер:
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology
- Sechenov First Moscow State Medical University
- Russian Medical Academy of Continuous Professional Education
- Шығарылым: Том 6, № 1 (2025)
- Беттер: 97-115
- Бөлім: Reviews
- URL: https://ogarev-online.ru/DD/article/view/310055
- DOI: https://doi.org/10.17816/DD634885
- ID: 310055
Дәйексөз келтіру
Толық мәтін
Аннотация
Mental disorders are a significant medical and social issue globally. Currently, approximately 970 million individuals suffer from mental disorders, with over 300 million diagnosed with depression or bipolar disorder. Recently, there has been significant advancement in digital technologies, particularly in artificial intelligence, encompassing machine learning and deep learning. Given the growing interest in their use in psychiatry and the need to develop new approaches to psychiatric care. This review explores the current and promising directions for the application of artificial intelligence technologies in clinical practice, focusing on patients with depression and bipolar disorder.
A literature search was conducted from January to February 2024 in the databases PubMed, Google Scholar, and eLibrary using the following keywords: «психиатрия» ("psychiatry"), «психическое здоровье» ("mental health"), «психическое расстройство» ("psychiatric disorder"), «депрессия» ("depression"), «депрессивный эпизод» ("depressive episode"), «рекуррентное депрессивное расстройство» ("recurrent brief depression"), «биполярное расстройство» ("bipolar disorder"), «машинное обучение» ("machine learning"), «глубокое обучение» ("deep learning"), «искусственный интеллект» ("artificial intelligence"); "psychiatry", "mental health", "psychiatric disorder", "depression", "depressive episode", "major depressive disorder", "bipolar disorder", "machine learning", "deep learning", "artificial intelligence". Studies on the use of artificial intelligence technologies in patients with depression and bipolar disorders and review articles discussing the difficulties of their application in psychiatry were excluded. Publications in Russian and English in the past 10 years were selected.
The most commonly used machine learning models for diagnosing patients with affective disorders utilize neuroimaging data (primarily magnetic resonance imaging and electroencephalography), text, audio, and video data and data from electronic devices, molecular-genetic markers, and clinical indicators. The models were trained using mono- or multimodal datasets. Notably, many of the reviewed studies have significant limitations, making the implementation of artificial intelligence technologies in clinical practice challenging. These include small sample sizes, low representativeness and standardization, inclusion of “noise” and correlated variables, and absence of validation using independent datasets.
Studies on machine learning methods have demonstrated promising results in the early diagnosis of affective episodes and in predicting treatment responses. However, their clinical application is limited, owing to insufficient validation. Well-designed prospective cohort studies and the creation of extensive, high-quality datasets and models capable of uncovering new relationships between variables are required to address this limitation.
Толық мәтін
##article.viewOnOriginalSite##Авторлар туралы
Ekaterina Mosolova
V. Serbsky National Medical Research Centre for Psychiatry and Narcology
Email: kata_mosolova@mail.ru
ORCID iD: 0000-0003-2324-2814
SPIN-код: 6077-3386
Ресей, Moscow
Alexander Alfimov
Sechenov First Moscow State Medical University
Email: alex.alfimov@gmail.com
ORCID iD: 0000-0002-9064-7881
SPIN-код: 4354-7081
MD, Cand. Sci. (Medicine)
Ресей, MoscowElena Kostyukova
V. Serbsky National Medical Research Centre for Psychiatry and Narcology
Email: ekostukova@gmail.com
ORCID iD: 0000-0002-9830-1412
SPIN-код: 6510-3969
MD, Cand. Sci. (Medicine)
Ресей, MoscowSergey Mosolov
V. Serbsky National Medical Research Centre for Psychiatry and Narcology; Russian Medical Academy of Continuous Professional Education
Хат алмасуға жауапты Автор.
Email: profmosolov@mail.ru
ORCID iD: 0000-0002-5749-3964
SPIN-код: 3009-9162
MD, Dr. Sci. (Medicine), Professor
Ресей, Moscow; MoscowӘдебиет тізімі
- Oleynikova TA, Barybina ES. Regional differences in indicators of general and primary mental disorders in Russia. Current problems of health care and medical statistics. 2022;(3): 679–692. doi: 10.24412/2312-2935-2022-3-679-692 EDN: ODCFHO
- World Health Organisation. World mental health report: transforming mental health for all [Internet]. Geneva: WHO; 2022 [cited 2024 Jun 5]. Available from: https://iris.who.int/bitstream/handle/10665/356119/9789240049338-eng.pdf?sequence=1
- Chekroud AM, Bondar J, Delgadillo J, et al. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry. 2021;20(2):154–170. doi: 10.1002/wps.20882 EDN: WODVXR
- Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. American Journal of Psychiatry. 2006;163(11):1905–1917. doi: 10.1176/ajp.2006.163.11.1905 EDN: IVQWHF
- Hirschfeld RM. Differential diagnosis of bipolar disorder and major depressive disorder. Journal of Affective Disorders. 2014;169(Suppl. 1):S12–S16. doi: 10.1016/S0165-0327(14)70004-7
- Trivedi MH, Rush AJ, Wisniewski SR, et al; STAR*D Study Team. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. American Journal of Psychiatry. 2006;163(1):28–40. doi: 10.1176/appi.ajp.163.1.28
- Souery D, Serretti A, Calati R, et al. Switching antidepressant class does not improve response or remission in treatment-resistant depression. Journal of Clinical Psychopharmacology. 2011;31(4):512–516. doi: 10.1097/JCP.0b013e3182228619 EDN: ZUCAGB
- years of precision medicine in oncology. The Lancet. 2021;397(10287):1781. doi: 10.1016/S0140-6736(21)01099-0 EDN: MWXXOM
- Tsvetkova LA, Cherchenko OV. Big data technology in medicine and healthcare in Russia and in the world. Medical Doctor and IT. 2016;(3):60–73. EDN: WMPOXN
- Chen ZhS, Kulkarni PP, Galatzer-Levy IR, et al. Modern views of machine learning for precision psychiatry. Patterns. 2022;3(11):100602. doi: 10.1016/j.patter.2022.100602 EDN: IQJLGK
- Koutsouleris N, Hauser TU, Skvortsova V, De Choudhury M. From promise to practice: towards the realisation of AI-informed mental health care. The Lancet Digital Health. 2022;4(11):e829–e840. doi: 10.1016/S2589-7500(22)00153-4 EDN: WQOPTS
- Passos IC, Ballester P, Rabelo-da-Ponte FD, Kapczinski F. Precision psychiatry: the future is now. The Canadian Journal of Psychiatry. 2021;67(1):21–25. doi: 10.1177/0706743721998044 EDN: TEGSTI
- Doraiswamy PM, Blease Ch, Bodner K. Artificial intelligence and the future of psychiatry: Insights from a global physician survey. Artificial Intelligence in Medicine. 2020;102:101753. doi: 10.1016/j.artmed.2019.101753 EDN: HCXKRN
- Rogan J, Bucci S, Firth J. Health care professionals’ views on the use of passive sensing, AI, and machine learning in mental health care: systematic review with meta-synthesis. JMIR Mental Health. 2024;11:e49577. doi: 10.2196/49577 EDN: GISVDP
- Monteith S, Glenn T, Geddes JR, et al. Artificial intelligence and increasing misinformation. The British Journal of Psychiatry. 2023;224(2):33–35. doi: 10.1192/bjp.2023.136 EDN: AHHPXI
- Harris E. Machine learning algorithms failed to find depression biomarker. JAMA. 2024;331(7):554. doi: 10.1001/jama.2023.28339 EDN: JYXHQB
- Sahoo JP, Narayan BN, Santi NS. The future of psychiatry with artificial intelligence: can the man-machine duo redefine the tenets? Consortium Psychiatricum. 2023;4(3):72–76. doi: 10.17816/CP13626 EDN: KTPGMU
- Ray A, Bhardwaj A, Malik YK, et al. Artificial intelligence and psychiatry: an overview. Asian Journal of Psychiatry. 2022;70:103021. doi: 10.1016/j.ajp.2022.103021 EDN: GBXYZG
- Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge, MA: MIT Press; 2016.
- Chollet F. Deep learning with python. New York: Manning Publications; 2017.
- Shalev-Shwartz S, Ben-David S. Understanding machine learning: from theory to algorithms. New York: Cambridge University Press; 2014. doi: 10.1017/CBO9781107298019
- Orrù G, Monaro M, Conversano C, et al. Machine Learning in Psychometrics and Psychological Research. Frontiers in Psychology. 2020;10:. doi: 10.3389/fpsyg.2019.02970 EDN: SUIVNX
- Nielsen AN, Barch DM, Petersen SE, et al. Machine Learning With Neuroimaging: Evaluating Its Applications in Psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2020;5(8):791–798. doi: 10.1016/j.bpsc.2019.11.007 EDN: OXBXJE
- Janssen RJ, Mourão-Miranda J, Schnack HG. Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2018;3(9):798–808. doi: 10.1016/j.bpsc.2018.04.004 EDN: VFTDSS
- Gao S, Calhoun VD, Sui J. Machine learning in major depression: From classification to treatment outcome prediction. CNS Neuroscience & Therapeutics 2018;24(11):1037–1052. doi: 10.1111/cns.13048 EDN: YIYUHJ
- Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14. doi: 10.1167/tvst.9.2.14
- Chapelle O, Scholkopf B, Zien A. Semi-supervised learning. London: The MIT press; 2006. doi: 10.7551/mitpress/9780262033589.001.0001
- Casalino G, Castellano G, Hryniewicz O, et al. Semi-supervised vs. supervised learning for mental health monitoring: a case study on bipolar disorder. International Journal of Applied Mathematics and Computer Science. 2023;33(3):419–428. doi: 10.34768/amcs-2023-0030 EDN: GOPANB
- Zhang YJ, Hu LSh. Fault propagation inference based on a graph neural network for steam turbine systems. Energies. 2021;14(2):309. doi: 10.3390/en14020309 EDN: NNNPCK
- Pelin H, Ising M, Stein F, et al. Identification of transdiagnostic psychiatric disorder subtypes using unsupervised learning. Neuropsychopharmacology. 2021;46(11):1895–1905. doi: 10.1038/s41386-021-01051-0 EDN: UJLLNA
- James G, Witten D, Hastie T, et al. Unsupervised Learning. In: James G, Witten D, Hastie T, et al. An introduction to statistical learning: with applications in Python. Switzerland: Springer; 2023. P. 503–556. doi: 10.1007/978-3-031-38747-0_12
- Koppe G, Meyer-Lindenberg A, Durstewitz D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology 2020;46(1):176–190. doi: 10.1038/s41386-020-0767-z EDN: ZLJVOQ
- Thompson PM, Andreassen OA, Arias-Vasquez A, et al. ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide. NeuroImage. 2017;145(Pt B):389–408. doi: 10.1016/j.neuroimage.2015.11.057 EDN: YUUHXZ
- Abrol A, Fu Z, Salman M, et al. Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning. Nature Communications. 2021;12(1):353. doi: 10.1038/s41467-020-20655-6 EDN: IKGWJA
- Quaak M, van de Mortel L, Thomas RM, van Wingen G. Deep learning applications for the classification of psychiatric disorders using neuroimaging data: systematic review and meta-analysis. NeuroImage: Clinical. 2021;30:102584. doi: 10.1016/j.nicl.2021.102584 EDN: HPDNMR
- Squires M, Tao X, Elangovan S, et al. Deep learning and machine learning in psychiatry: a survey of current progress in depression detection, diagnosis and treatment. Brain Informatics. 2023;10(1):10. doi: 10.1186/s40708-023-00188-6 EDN: TPRDEE
- Castelvecchi D. Can we open the black box of AI? Nature. 2016;538(7623):20–23. doi: 10.1038/538020a
- Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence. 2019;1(5):206–215. doi: 10.1038/s42256-019-0048-x
- Briganti G. Artificial intelligence in psychiatry. Psychiatria Danubina. 2023;35(Suppl. 2):15–19.
- Lin E, Lin ChH, Lane HYu. Precision psychiatry applications with pharmacogenomics: artificial intelligence and machine learning approaches. International Journal of Molecular Sciences. 2020;21(3):969. doi: 10.3390/ijms21030969 EDN: ZHSDMD
- Sajno E, Bartolotta S, Tuena C, et al. Machine learning in biosignals processing for mental health: a narrative review. Frontiers in Psychology. 2023;13: doi: 10.3389/fpsyg.2022.1066317 EDN: LJZGQV
- Meisler SL, Kahana MJ, Ezzyat Y. Does data cleaning improve brain state classification? Journal of Neuroscience Methods. 2019;328:108421. doi: 10.1016/j.jneumeth.2019.108421 EDN: ETRDMP
- Bzdok D, Meyer-Lindenberg A. Machine learning for precision psychiatry: opportunities and challenges. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2018;3(3):223–230. doi: 10.1016/j.bpsc.2017.11.007
- Brossollet I, Gallet Q, Favre P, Houenou J. Machine learning and brain imaging for psychiatric disorders: new perspectives. In: Colliot O, editor. Machine learning for brain disorders. New York: Human New York; 2023. P. 1009–1036. doi: 10.1007/978-1-0716-3195-9_32
- Zeng LL, Shen H, Liu L, et al. Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain. 2012;135(5):1498–1507. doi: 10.1093/brain/aws059
- Liu Yu, Pu Ch, Xia Sh, et al. Machine learning approaches for diagnosing depression using EEG: a review. Translational Neuroscience. 2022;13(1):224–235. doi: 10.1515/tnsci-2022-0234 EDN: RCXDYH
- Wu CT, Huang HC, Huang S, et al. Resting-State EEG Signal for major depressive disorder detection: a systematic validation on a large and diverse dataset. Biosensors. 2021;11(12):499. doi: 10.3390/bios11120499 EDN: KVWWIN
- Claude LA, Houenou J, Duchesnay E, Favre P. Will machine learning applied to neuroimaging in bipolar disorder help the clinician? A critical review and methodological suggestions. Bipolar Disorders. 2020;22(4):334–355. doi: 10.1111/bdi.12895 EDN: KEDUAL
- Mwangi B, Wu MJ, Bauer IE, et al. Predictive classification of pediatric bipolar disorder using atlas-based diffusion weighted imaging and support vector machines. Psychiatry Research: Neuroimaging. 2015;234(2):265–271. doi: 10.1016/j.pscychresns.2015.10.002
- Besga A, Termenon M, Graña M, et al. Discovering Alzheimer's disease and bipolar disorder white matter effects building computer aided diagnostic systems on brain diffusion tensor imaging features. Neuroscience Letters. 2012;520(1):71–76. doi: 10.1016/j.neulet.2012.05.033
- Jie NF, Zhu MH, Ma XY, et al. Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data. IEEE Transactions on Autonomous Mental Development. 2015;7(4):320–331. doi: 10.1109/TAMD.2015.2440298
- Nunes A, Schnack HG, Ching CRK, et al; for the ENIGMA Bipolar Disorders Working Group. Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA bipolar disorders working group. Molecular Psychiatry. 2018;25(9):2130–2143. doi: 10.1038/s41380-018-0228-9 EDN: LBYLFZ
- Schwarz E, Doan NT, Pergola G, et al; The IMAGEMEND Consortium, Karolinska Schizophrenia Project (KaSP) Consortium. Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Translational Psychiatry. 2019;9(1):12. doi: 10.1038/s41398-018-0225-4 EDN: RIAGYN
- Lin K, Shao R, Geng X, et al. Illness, at-risk and resilience neural markers of early-stage bipolar disorder. Journal of Affective Disorders. 2018;238:16–23. doi: 10.1016/j.jad.2018.05.017
- Grotegerd D, Suslow T, Bauer J, et al. Discriminating unipolar and bipolar depression by means of fMRI and pattern classification: a pilot study. European Archives of Psychiatry and Clinical Neuroscience. 2012;263(2):119–131. doi: 10.1007/s00406-012-0329-4 EDN: UDZFEB
- Vai B, Parenti L, Bollettini I, et al. Predicting differential diagnosis between bipolar and unipolar depression with multiple kernel learning on multimodal structural neuroimaging. European Neuropsychopharmacology. 2020;34:28–38. doi: 10.1016/j.euroneuro.2020.03.008 EDN: FFHKXU
- Watts D, Pulice RF, Reilly J, et al. Predicting treatment response using EEG in major depressive disorder: a machine-learning meta-analysis. Translational Psychiatry. 2022;12(1):1–18. doi: 10.1038/s41398-022-02064-z EDN: JQTPLK
- Liu F, Guo W, Yu D, et al. Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PLoS ONE. 2012;7(7):e40968. doi: 10.1371/journal.pone.0040968
- Jiang R, Abbott CC, Jiang T, et al. SMRI biomarkers predict electroconvulsive treatment outcomes: accuracy with independent data sets. Neuropsychopharmacology. 2017;43(5):1078–1087. doi: 10.1038/npp.2017.165
- Wade BSC, Joshi SH, Njau S, et al. Effect of electroconvulsive therapy on striatal morphometry in major depressive disorder. Neuropsychopharmacology. 2016;41(10):2481–2491. doi: 10.1038/npp.2016.48
- Fleck DE, Ernest N, Adler CM, et al. Prediction of lithium response in first-episode mania using the LITHium intelligent agent (LITHIA): pilot data and proof-of-concept. Bipolar Disorders. 2017;19(4):259–272. doi: 10.1111/bdi.12507
- Drysdale AT, Grosenick L, Downar J, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine. 2016;23(1):28–38. doi: 10.1038/nm.4246
- Wu MJ, Mwangi B, Bauer IE, et al. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. NeuroImage. 2017;145(Pt B):254–264. doi: 10.1016/j.neuroimage.2016.02.016 EDN: YVYGFJ
- Cearns M, Opel N, Clark S, et al. Predicting rehospitalization within 2 years of initial patient admission for a major depressive episode: a multimodal machine learning approach. Translational Psychiatry. 2019;9(1):285. doi: 10.1038/s41398-019-0615-2 EDN: LXKHGX
- Winter NR, Blanke J, Leenings R, et al. A systematic evaluation of machine learning–based biomarkers for major depressive disorder. JAMA Psychiatry. 2024;81(4):386. doi: 10.1001/jamapsychiatry.2023.5083 EDN: KSKMUN
- Schulz MA, Yeo BTT, Vogelstein JT, et al. Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets. Nature Communications. 2020;11(1):1–15. doi: 10.1038/s41467-020-18037-z EDN: RMGYTD
- Le Glaz A, Haralambous Ya, Kim-Dufor DH, et al. Machine learning and natural language processing in mental health: systematic review. Journal of Medical Internet Research. 2021;23(5):e15708. doi: 10.2196/15708 EDN: AYMEHT
- De Choudhury M, Gamon M, Counts S, Horvitz E. Predicting depression via social media. Proceedings of the International AAAI Conference on Web and Social Media. 2021;7(1):128–137. doi: 10.1609/icwsm.v7i1.14432 EDN: ZCZNTB
- Reece AG, Reagan AJ, Lix KLM, et al. Forecasting the onset and course of mental illness with Twitter data. Scientific Reports. 2017;7(1):13006. doi: 10.1038/s41598-017-12961-9
- Tsugawa S, Kikuchi Y, Kishino F, et al. Recognizing depression from Twitter activity. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. New York, 2015. New York: Association for Computing Machinery; 2015. P. 3187–3196. doi: 10.1145/2702123.2702280
- Eichstaedt JC, Smith RJ, Merchant RM, et al. Facebook language predicts depression in medical records. Proceedings of the National Academy of Sciences. 2018;115(44):11203–11208. doi: 10.1073/pnas.1802331115 EDN: ZJVQWC
- Ahmad Wani M, ELAffendi MA, Shakil KA, et al. Depression screening in humans with AI and deep learning techniques. IEEE Transactions on Computational Social Systems. 2023;10(4):2074–2089. doi: 10.1109/TCSS.2022.3200213 EDN: TWZLUP
- Rosa RL, Schwartz GM, Ruggiero WV, Rodriguez DZ. A knowledge-based recommendation system that includes sentiment analysis and deep learning. IEEE Transactions on Industrial Informatics. 2019;15(4):2124–2135. doi: 10.1109/TII.2018.2867174
- Rumshisky A, Ghassemi M, Naumann T, et al. Predicting early psychiatric readmission with natural language processing of narrative discharge summaries. Translational Psychiatry. 2016;6(10):e921. doi: 10.1038/tp.2015.182
- Edgcomb J, Shaddox T, Hellemann G, Brooks JO. High-risk phenotypes of early psychiatric readmission in bipolar disorder with comorbid medical illness. Psychosomatics. 2019;60(6):563–573. doi: 10.1016/j.psym.2019.05.002
- Bantilan N, Malgaroli M, Ray B, Hull TD. Just in time crisis response: suicide alert system for telemedicine psychotherapy settings. Psychotherapy Research. 2020;31(3):289–299. doi: 10.1080/10503307.2020.1781952 EDN: LNBXVO
- Low DM, Bentley KH, Ghosh SS. Automated assessment of psychiatric disorders using speech: a systematic review. Laryngoscope Investigative Otolaryngology. 2020;5(1):96–116. doi: 10.1002/lio2.354 EDN: DGKCIS
- Cummins N, Scherer S, Krajewski J, et al. A review of depression and suicide risk assessment using speech analysis. Speech Communication. 2015;71:10–49. doi: 10.1016/j.specom.2015.03.004
- Vázquez-Romero A, Gallardo-Antolín A. Automatic detection of depression in speech using ensemble convolutional neural networks. Entropy. 2020;22(6):688. doi: 10.3390/e22060688 EDN: VAJJXC
- Weiner L, Guidi A, Doignon-Camus N, et al. Vocal features obtained through automated methods in verbal fluency tasks can aid the identification of mixed episodes in bipolar disorder. Translational Psychiatry. 2021;11(1):415. doi: 10.1038/s41398-021-01535-z EDN: LPQQSW
- Baltrusaitis T, Zadeh A, Lim YC, Morency LP. OpenFace 2.0: facial behavior analysis toolkit. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). Xi’an, 2018 May 15–19. Xi’an: IEEE; 2018. P. 59–66. doi: 10.1109/FG.2018.00019
- Ray A, Kumar S, Reddy R, et al. Multi-level attention network using text, audio and video for depression prediction. In: Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop. Nice, 2019 Oct 21. New York: Association for Computing Machinery; 2019. P. 81–88. doi: 10.1145/3347320.3357697
- Shao W, You Zh, Liang L, et al. A multi-modal gait analysis-based detection system of the risk of depression. IEEE Journal of Biomedical and Health Informatics. 2022;26(10):4859–4868. doi: 10.1109/JBHI.2021.3122299 EDN: ZGDNXA
- Zhu Y, Shang Y, Shao Z, Guo G. Automated depression diagnosis based on deep networks to encode facial appearance and dynamics. IEEE Transactions on Affective Computing. 2018;9(4):578–584. doi: 10.1109/TAFFC.2017.2650899
- Birnbaum ML, Abrami A, Heisig S, et al. Acoustic and facial features from clinical interviews for machine learning-based psychiatric diagnosis: algorithm development. JMIR Mental Health. 2022;9(1):e24699. doi: 10.2196/24699 EDN: MMIGWG
- Lam G, Dongyan H, Lin W. Context-aware deep learning for multi-modal depression detection. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brightone, 2018 May 12–17. Brightone: IEEE; 2019. P. 3946–3950. doi: 10.1109/ICASSP.2019.8683027
- Dibeklioglu H, Hammal Z, Cohn JF. Dynamic multimodal measurement of depression severity using deep autoencoding. IEEE Journal of Biomedical and Health Informatics. 2018;22(2):525–536. doi: 10.1109/JBHI.2017.2676878
- Garcia-Ceja E, Riegler M, Nordgreen T, et al. Mental health monitoring with multimodal sensing and machine learning: a survey. Pervasive and Mobile Computing. 2018;51:1–26. doi: 10.1016/j.pmcj.2018.09.003 EDN: VJHZEI
- Maatoug R, Oudin A, Adrien V, et al. Digital phenotype of mood disorders: a conceptual and critical review. Frontiers in Psychiatry. 2022;13:1–13. doi: 10.3389/fpsyt.2022.895860 EDN: GUKWZR
- Seppälä J, De Vita I, Jämsä T, et al; M-RESIST Group. Mobile phone and wearable sensor-based mHealth approaches for psychiatric disorders and symptoms: systematic review. JMIR Mental Health. 2019;6(2):e9819. doi: 10.2196/mental.9819
- Renn BN, Pratap A, Atkins DC, et al. Smartphone-based passive assessment of mobility in depression: challenges and opportunities. Mental Health and Physical Activity. 2018;14:136–139. doi: 10.1016/j.mhpa.2018.04.003
- Place S, Blanch-Hartigan D, Rubin C, et al. Behavioral indicators on a mobile sensing platform predict clinically validated psychiatric symptoms of mood and anxiety disorders. Journal of Medical Internet Research. 2017;19(3):e75. doi: 10.2196/jmir.6678
- Opoku Asare K, Terhorst Ya, Vega Ju, et al. Predicting depression from smartphone behavioral markers using machine learning methods, hyperparameter optimization, and feature importance analysis: exploratory study. JMIR mHealth and uHealth. 2021;9(7):e26540. doi: 10.2196/26540 EDN: RJIIAK
- Razavi R, Gharipour A, Gharipour M. Depression screening using mobile phone usage metadata: a machine learning approach. Journal of the American Medical Informatics Association. 2020;27(4):522–530. doi: 10.1093/jamia/ocz221 EDN: IEEJUL
- Yue C, Ware S, Morillo R, et al. Automatic depression prediction using Internet traffic characteristics on smartphones. Smart Health. 2020;18:100137. doi: 10.1016/j.smhl.2020.100137 EDN: JTSCUZ
- Saeb S, Zhang M, Karr CJ, et al. Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: an exploratory study. Journal of Medical Internet Research. 2015;17(7):e175. doi: 10.2196/jmir.4273
- Tonon AC, Fuchs DFP, Barbosa Gomes W, et al. Nocturnal motor activity and light exposure: objective actigraphy-based marks of melancholic and non-melancholic depressive disorder. Brief report. Psychiatry Research. 2017;258:587–590. doi: 10.1016/j.psychres.2017.08.025
- Schulte A, Breiksch T, Brockmann J, Bauer N. Machine learning based classification of depression using motor activity data and autoregressive model. Studies in Health Technology and Informatics. 2022;296:25–32. doi: 10.3233/SHTI220800
- Schneider J, Bakštein E, Kolenič M, et al. Motor activity patterns can distinguish between interepisode bipolar disorder patients and healthy controls. CNS Spectrums. 2020;27(1):82–92. doi: 10.1017/S1092852920001777 EDN: HIYLDA
- Lyall LM, Sangha N, Zhu X, et al. Subjective and objective sleep and circadian parameters as predictors of depression-related outcomes: a machine learning approach in UK biobank. Journal of Affective Disorders. 2023;335:83–94. doi: 10.1016/j.jad.2023.04.138 EDN: MEFDLM
- Jakobsen P, Garcia-Ceja E, Riegler M, et al. Applying machine learning in motor activity time series of depressed bipolar and unipolar patients compared to healthy controls. PLOS ONE. 2020;15(8):e0231995. doi: 10.1371/journal.pone.0231995 EDN: WPAFQM
- Carnevali L, Thayer JF, Brosschot JF, Ottaviani C. Heart rate variability mediates the link between rumination and depressive symptoms: a longitudinal study. International Journal of Psychophysiology. 2018;131:131–138. doi: 10.1016/j.ijpsycho.2017.11.002 EDN: YFCYHZ
- Chen X, Yang R, Kuang D, et al. Heart rate variability in patients with major depression disorder during a clinical autonomic test. Psychiatry Research. 2017;256:207–211. doi: 10.1016/j.psychres.2017.06.041
- Byun S, Kim AY, Jang EH, et al. Entropy analysis of heart rate variability and its application to recognize major depressive disorder: a pilot study. Technology and Health Care. 2019;27(Suppl. 1):407–424. doi: 10.3233/THC-199037
- Kuang D, Yang R, Chen X, et al. Depression recognition according to heart rate variability using Bayesian Networks. Journal of Psychiatric Research. 2017;95:282–287. doi: 10.1016/j.jpsychires.2017.09.012 EDN: VPNRAD
- Nickels S, Edwards MD, Poole SF, et al. Toward a mobile platform for real-world digital measurement of depression: user-centered design, data quality, and behavioral and clinical modeling. JMIR Mental Health. 2021;8(8):e27589. doi: 10.2196/27589 EDN: YIRTSR
- Narziev N, Goh H, Toshnazarov K, et al. STDD: short-term depression detection with passive sensing. Sensors. 2020;20(5):1396. doi: 10.3390/s20051396 EDN: PYUQKL
- Cho CH, Lee T, Kim MG, et al. Mood prediction of patients with mood disorders by machine learning using passive digital phenotypes based on the circadian rhythm: prospective observational cohort study. Journal of Medical Internet Research. 2019;21(4):e11029. doi: 10.2196/11029
- Maciukiewicz M, Marshe VS, Hauschild AC, et al. GWAS-based machine learning approach to predict duloxetine response in major depressive disorder. Journal of Psychiatric Research. 2018;99:62–68. doi: 10.1016/j.jpsychires.2017.12.009
- Athreya AP, Neavin D, Carrillo-Roa T, et al. Pharmacogenomics-driven prediction of antidepressant treatment outcomes: a machine-learning approach with multi-trial replication. Clinical Pharmacology & Therapeutics. 2019;106(4):855–865. doi: 10.1002/cpt.1482
- Eugene AR, Masiak J, Eugene B. Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning. F1000Research. 2018;7:474. doi: 10.12688/f1000research.14451.3
- Qi B, Fiori LM, Turecki G, Trakadis YJ. Machine learning analysis of blood microRNA data in major depression: a case-control study for biomarker discovery. International Journal of Neuropsychopharmacology. 2020;23(8):505–510. doi: 10.1093/ijnp/pyaa029 EDN: AFSOEL
- Lin E, Kuo PH, Liu YL, et al. A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Frontiers in Psychiatry. 2018;9:1–10. doi: 10.3389/fpsyt.2018.00290
- Chang B, Choi Y, Jeon M, et al. ARPNet: antidepressant response prediction network for major depressive disorder. Genes. 2019;10(11):907. doi: 10.3390/genes10110907
- Bracher-Smith M, Crawford K, Escott-Price V. Machine learning for genetic prediction of psychiatric disorders: a systematic review. Molecular Psychiatry. 2020;26(1):70–79. doi: 10.1038/s41380-020-0825-2 EDN: WJVOFG
- Pirooznia M, Seifuddin F, Judy J, et al. Data mining approaches for genome-wide association of mood disorders. Psychiatric Genetics. 2012;22(2):55–61. doi: 10.1097/YPG.0b013e32834dc40d
- Thompson DJ, Well D, Selzam S, et al. UK Biobank release and systematic evaluation of optimised polygenic risk scores for 53 diseases and quantitative traits. medRxiv. 2022. doi: 10.1101/2022.06.16.22276246
- Acikel C, Aydin Son Y, Celik C, Gul H. Evaluation of novel candidate variations and their interactions related to bipolar disorders: analysis of GWAS data. Neuropsychiatric Disease and Treatment. 2016;12:2997–3004. doi: 10.2147/NDT.S112558 EDN: XZHYZF
- Laksshman S, Bhat RR, Viswanath V, Li X. DeepBipolar: identifying genomic mutations for bipolar disorder via deep learning. Human Mutation. 2017;38(9):1217–1224. doi: 10.1002/humu.23272
- Wollenhaupt-Aguiar B, Librenza-Garcia D, Bristot G, et al. Differential biomarker signatures in unipolar and bipolar depression: a machine learning approach. Australian & New Zealand Journal of Psychiatry. 2019;54(4):393–401. doi: 10.1177/0004867419888027
- Lahat D, Adali T, Jutten C. Multimodal data fusion: an overview of methods, challenges, and prospects. Proceedings of the IEEE. 2015;103(9):1449–1477. doi: 10.1109/JPROC.2015.2460697 EDN: VEUIZL
- Sun J, Dong QX, Wang SW, et al. Artificial intelligence in psychiatry research, diagnosis, and therapy. Asian Journal of Psychiatry. 2023;87:103705. doi: 10.1016/j.ajp.2023.103705 EDN: MIEUPR
- Zhou L, Pan S, Wang J, Vasilakos AV. Machine learning on big data: opportunities and challenges. Neurocomputing. 2017;237:350–361. doi: 10.1016/j.neucom.2017.01.026
- Yamada H, Abe O, Shizukuishi T, et al. Efficacy of distortion correction on diffusion imaging: comparison of FSL eddy and eddy_correct using 30 and 60 directions diffusion encoding. PLoS ONE. 2014;9(11):e112411. doi: 10.1371/journal.pone.0112411
- Birkenbihl C, Emon MA, Vrooman H, et al; Alzheimer’s Disease Neuroimaging Initiative. Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia — lessons for translation into clinical practice. EPMA Journal. 2020;11(3):367–376. doi: 10.1007/s13167-020-00216-z EDN: AUZVYR
- Fröhlich H, Balling R, Beerenwinkel N, et al. From hype to reality: data science enabling personalized medicine. BMC Medicine. 2018;16(1):1–15. doi: 10.1186/s12916-018-1122-7 EDN: BPHVWT
- Riley P. Three pitfalls to avoid in machine learning. Nature. 2019;572(7767):27–29. doi: 10.1038/d41586-019-02307-y
- Jobin A, Ienca M, Vayena E. The global landscape of AI ethics guidelines. Nature Machine Intelligence. 2019;1(9):389–399. doi: 10.1038/s42256-019-0088-2 EDN: HDVOGB
- Fiske A, Henningsen P, Buyx A. Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. Journal of Medical Internet Research. 2019;21(5):e13216. doi: 10.2196/13216
- Mosolov SN. Ethical-deontological problems of therapy of mental disorders. S.S. Korsakov Journal of neurology nd psychiatry. 2023;123(9):7–14. doi: 10.17116/jnevro20231230917 EDN: BYVVTE
- Podoplelova ES. Analysis of artificial intelligence methods applied to solving psychiatry problems. Izvestiya SFedU. Engineering sciences. 2022;2(226):180–189. doi: 10.18522/2311-3103-2022-2-180-189 EDN: IMHTOB
- Rutherford S, Kia SM, Wolfers T, et al. The normative modeling framework for computational psychiatry. Nature Protocols. 2022;17(7):1711–1734. doi: 10.1038/s41596-022-00696-5 EDN: OBZNLJ
- Huys QJM, Browning M, Paulus MP, Frank MJ. Advances in the computational understanding of mental illness. Neuropsychopharmacology. 2020;46(1):3–19. doi: 10.1038/s41386-020-0746-4 EDN: SPYYXJ
- Borsboom D. A network theory of mental disorders. World Psychiatry. 2017;16(1):5–13. doi: 10.1002/wps.20375
- Briganti G. On the use of Bayesian artificial intelligence for hypothesis generation in psychiatry. Psychiatria Danubina. 2022;34(Suppl. 8):201–206.
- Ewbank MP, Cummins R, Tablan V, et al. Understanding the relationship between patient language and outcomes in internet-enabled cognitive behavioural therapy: a deep learning approach to automatic coding of session transcripts. Psychotherapy Research. 2020;31(3):300–312. doi: 10.1080/10503307.2020.1788740 EDN: LQUCCR
- Gao Q, Naumann M, Jovanov I, et al. Model-based design of closed loop deep brain stimulation controller using reinforcement learning. In: 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). Sydney, 2020 Apr 21–25. Sydney: IEEE; 2020. P. 108–118. doi: 10.1109/ICCPS48487.2020.00018
- Boscardin CK, Gin B, Golde PB, Hauer KE. ChatGPT and generative artificial intelligence for medical education: potential impact and opportunity. Academic Medicine. 2023;99(1):22–27. doi: 10.1097/ACM.0000000000005439 EDN: IAULYR
- Mosolov SN. Comparative efficacy of preventive use of lithium carbonate, carbamazepine and sodium valproate in affective and schizoaffective psychoses. Zhurnal Nevropatologii i Psikhiatrii Imeni S.S.Korsakova. 1991;91(4):78–83. (In Russ) EDN: QZCENT
Қосымша файлдар
