Economic prospects of using artificial intelligence and neural network algorithms in research of generation Z biotechnologists

Cover Page

Cite item

Abstract

the article discusses the use of artificial intelligence-based platforms and services in various fields of modern biotechnology using real-world case studies from recent decades. The issues of practical expediency, economic and commercial risks, as well as possible prospects and ways of further development of artificial intelligence (AI) in educational research of biotechnologists for generation Z. The authors present a theoretical overview of the use of artificial intelligence in modern biotechnology and the results of a survey of a specialized audience on the use of AI in biotechnology as an applied aspect of research. The purpose of the study: based on the analysis of scientific papers and a survey conducted, professional perception of the community and possible ethical and social risks and consequences. Research methods: the authors used decomposition, analysis, and synthesis as methods in the study. Surveys, questionnaires, and an analysis of innovation ideas were also conducted using artificial intelligence tools proposed by undergraduates while completing the Economics and Innovation discipline. Results: in the presented review, the authors repeatedly refer to real-world cases of developing and using programs and algorithms to solve a wide range of problems in modern biotechnology, and many others. The analysis of the survey data also demonstrates a predominantly positive trend in the introduction of AI algorithms for generation Z biotechnologists. Conclusions: a theoretical review of scientific papers on the study of the introduction of artificial intelligence in the biotechnology industry, a survey of the relevant audience on the integration of AI in the professional field (biotechnology). The conclusion is made about the prospects, taking into account its role in breakthrough innovations and multidisciplinary educational research.

About the authors

T. K Ekshikeev

St. Petersburg State Chemical and Pharmaceutical University

Email: tager.ekshikeev@pharminnotech.com
ORCID iD: 0000-0002-9179-7398

G. S Shepelin

St. Petersburg State Chemical and Pharmaceutical University

Email: Gleb.SHepelin@spcpu.ru
ORCID iD: 0009-0002-5527-1062

M. A Vorobyev

St. Petersburg State Chemical and Pharmaceutical University

Email: Maksim.Vorobev@spcpu.ru
ORCID iD: 0009-0000-8277-5309

I. A Obukhova

St. Petersburg State Forest Engineering University

Email: iobukhova@inbox.ru
ORCID iD: 0000-0002-1472-1867

References

  1. Duan F., Duan C., Xu H., Zhao X., Sukhbaatar O., Gao J., Zhang M., Zhang W., Gu Y. AI-driven drug discovery from natural products // Advanced Agrochem. 2024. Vol. 3. No. 3. P. 185 – 187.
  2. Казакова Е.В., Трухин В.П., Наркевич И.А., Басакина И.И. Разработка адаптивной организационной структуры управления на примере экспортно ориентированного биотехнологического предприятия // Современная фармация: вызовы, ожидания, решения. Пермь: Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермская государственная фармацевтическая академия» Министерства здравоохранения Российской Федерации, 2023. С. 114 – 118.
  3. Казакова Е.В., Трухин В.П., Наркевич И.А. и др. Методические подходы к оценке готовности персонала к инновационным процессам на примере экспортно-ориентированного биотехнологического предприятия //Медицинский вестник Башкортостана. 2023. Т. 18. № 5 (107). С. 53 – 59.
  4. DeCamp M, Tilburt JC. Why we cannot trust artificial intelligence in medicine // Lancet Digit Health. 2019. Vol. 1, No. 8. P. E390.
  5. Wallace P.J. Gaining Trust: Lessons and Opportunities for Artificial Intelligence in Health Care // The Permanente Journal. 2024. Vol. 28. No. 3. Р. 168 – 171.
  6. Shevtsova D., Ahmed A., Boot I.W.A, Sanges C., Hudecek M., Jacobs J.J.L., Hort S., Vrijhoef H.J.M. Trust in and Acceptance of Artificial Intelligence Applications in Medicine: Mixed Methods Study // JMIR Human Factors. 2024. Vol. 11. Р. e47031.
  7. Kerasidou C.X., Kerasidou A., Buscher M., Wilkinson S. Before and beyond trust: reliance in medical AI // Journal of Medical Ethics. 2022. Vol. 48, No. 11. Р. 852 – 856.
  8. Zhang J., Zhang Zm. Ethics and governance of trustworthy medical artificial intelligence // BMC Medical Informatics and Decision Making. 2023. Vol. 23. No. 7. Р. 1 – 15.
  9. Flores L., Kim S., Young S.D. Addressing bias in artificial intelligence for public health surveillance // Journal of Medical Ethics. 2024. Vol. 50, No. 3. Р. 190 – 194.
  10. Starke G., De Clercq E., Elger B.S. Towards a pragmatist dealing with algorithmic bias in medical machine learning // Medicine, Health Care and Philosophy. 2021. Vol. 24. Р. 341 – 349.
  11. Strack R. Protein-ligand structure prediction // Nature Methods. 2024. Vol. 21. No. 549. Р. 1 – 13.
  12. Bian Y., Xie X.Q. Generative chemistry: drug discovery with deep learning generative models // Journal of Molecular Modeling. 2021. Vol. 27. No. 71. Р. 1 – 32.
  13. Fihn S.D., Jacobs E.A., Kim H.S., Perencevich E.N. JAMA Network Open-The Year in Review, 2024 // JAMA Network Open. 2025. Vol. 8. No. 3. Р.e257199.
  14. Zeng C., Schlueter D.J., Tran T.C., Babbar A., Cassini T., Bastarache L.A., Denny J.C. Comparison of phenomic profiles in the All of Us Research Program against the US general population and the UK Biobank // Journal of the American Medical Informatics Association. 2024. Vol. 31. No. 4. Р. 846 – 854.
  15. Blanchard A.E., Stanley C., Bhowmik D. Using GANs with adaptive training data to search for new molecules // Journal Cheminformatics. 2021. Vol. 13, No. 14. Р. 1 – 8.
  16. Hatz S., Spangler S., Bender A., Studham M., Haselmayer P., Lacoste A.M.B., et al. Identification of pharmacodynamic biomarker hypotheses through literature analysis with IBM Watson // PLoS ONE. 2019. Vol. 14. No. 4. Р. e0214619.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).