Distributions of (non)uniqueness for entire functions of arbitrary growth
- Authors: Menshikova E.B.1, Khabibullin B.N.1
-
Affiliations:
- Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences
- Issue: Vol 242 (2025)
- Pages: 74-81
- Section: Articles
- URL: https://ogarev-online.ru/2782-4438/article/view/312573
- DOI: https://doi.org/10.36535/2782-4438-2025-242-74-81
- ID: 312573
Cite item
Full Text
Abstract
A simple uniqueness theorem is given for entire functions $f$ on the complex plane $\mathbb{C}$ with upper constraints on the growth of its module $\ln|f|\leq M$. The result is formulated exclusively in terms of the radial integral counting function $\mathsf{N}_Z$ of the distribution of points $Z$, such that $f(Z)=0$. In the opposite direction, a rather general nonuniqueness theorem is obtained on the existence of a nonzero entire function $f$ that vanishes on $Z$, with restrictions on the growth of $\ln|f|$ by small shifts of the countable function $\mathsf{N}_Z$.
About the authors
Enzhe Bulatovna Menshikova
Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences
Email: algeom@bsu.bashedu.ru
Candidate of physico-mathematical sciences, no status
Bulat Nurmievich Khabibullin
Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences
Author for correspondence.
Email: algeom@bsu.bashedu.ru
Doctor of physico-mathematical sciences, Professor
References
- Дьедонне Ж., Основы современного анализа, Мир, М., 1964
- Хабибуллин Б. Н., “Рост целых функций с заданными нулями и представление мероморфных функций”, Мат. заметки., 73:1 (2003), 120–134
- Хабибуллин Б. Н., Байгускаров Т. Ю., “Логарифм модуля голоморфной функции как миноранта для субгармонической функции”, Мат. заметки., 99:4 (2016), 588–602
- Хейман У., Кеннеди П., Субгармонические функции, Мир, М., 1980
- Khabibullin B. N., “The logarithm of the modulus of an entire function as a minorant for a subharmonic function outside a small exceptional set”, Azerbaijan J. Math., 11:2 (2021), 48–59
- Ransford T., Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995
Supplementary files
