Application of Picard's method to Cauchy problem solution to some fractional differential equations
- Authors: Antonov N.A.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 243 (2025)
- Pages: 5-10
- Section: Articles
- URL: https://ogarev-online.ru/2782-4438/article/view/312577
- DOI: https://doi.org/10.36535/2782-4438-2025-243-5-10
- ID: 312577
Cite item
Full Text
Abstract
References
- label{b1} Учайкин В. В., Метод дробных производных, Артишок, Ульяновск, 2008
- label{b2} Al-Refai M., “Comparison principles for differential equations involving Caputo fractional derivative with Mittag-Leffler non-singular kernel”, Electron. J. Differ. Equations., 2018:36 (2018), 1–10
- label{b3} Al-Refai M., “On weighted Atangana–Baleanu fractional operators”, Adv. Differ. Equations., 2020 (2020), 3
- label{b4} Atangana A., Baleanu D., “New fractional derivatives with nonlocal and non-singular kernel: theory and applications to heat transfer model”, Therm. Sci., 20:2 (2016), 763–769
- label{b5} Baleanu D., Fernandez A., “On some new properties of fractional derivatives with Mittag-Leffler kernel”, Commun. Nonlin. Sci. Numer. Simul., 59 (2018), 444–462
- label{b6} Das S., Functional Fractional Calculus, Springer-Verlag, Berlin, 2011
- label{b7} Fareed A. F., Semary M. S., Hassan H. N., “An approximate solution of fractional order equations based on controlled Picard's method with Atangana–Baleanu fractional derivative”, Alexandria Eng. J., 61 (2022), 3673–3678
- label{b8} Gomez J. F., Torres L., Escobar R. F., Fractional Derivatives with Mittag-Leffler Kernel, Springer, 2019
- label{b9} Kashkari B., Syam M., “Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order”, Appl. Math. Comput., 290 (2016), 281–291
- label{b10} Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006
- label{b11} Momani S., Odibat Z. M., “Numerical comparison of methods for solving linear differential equations of fractional order”, Chaos Solitons Fractals., 31 (2007), 1248–1255
- label{b12} Podlubny I., Fractional Differential Equations, Academic Press, New York, 1999
- label{b13} Semary M. S., Hassan H. N., Radwan A. G., “Single and dual solution of fractional order differential order based on controlled Picard's method with Simpson rule”, J. Ass. Arab Univ. Basic Appl. Sci., 24:1 (2017), 247–253
- label{b14} Syam M. I., Al-Refai M., “Fractional differential equations Atangana–Baleanu fractional derivative: Analysis and applications”, Chaos Solitons Fractals., 10:2 (2019)
Supplementary files
