Application of Picard's method to Cauchy problem solution to some fractional differential equations

Cover Page

Cite item

Full Text

Abstract

In this paper, we apply the Picard method for solving the Cauchy problem for some fractional differential equations with Atangana–Baleanu fractional derivative. An iterative scheme is derived and its convergence is proved.

About the authors

Nikita Andreevich Antonov

Lomonosov Moscow State University

References

  1. label{b1} Учайкин В. В., Метод дробных производных, Артишок, Ульяновск, 2008
  2. label{b2} Al-Refai M., “Comparison principles for differential equations involving Caputo fractional derivative with Mittag-Leffler non-singular kernel”, Electron. J. Differ. Equations., 2018:36 (2018), 1–10
  3. label{b3} Al-Refai M., “On weighted Atangana–Baleanu fractional operators”, Adv. Differ. Equations., 2020 (2020), 3
  4. label{b4} Atangana A., Baleanu D., “New fractional derivatives with nonlocal and non-singular kernel: theory and applications to heat transfer model”, Therm. Sci., 20:2 (2016), 763–769
  5. label{b5} Baleanu D., Fernandez A., “On some new properties of fractional derivatives with Mittag-Leffler kernel”, Commun. Nonlin. Sci. Numer. Simul., 59 (2018), 444–462
  6. label{b6} Das S., Functional Fractional Calculus, Springer-Verlag, Berlin, 2011
  7. label{b7} Fareed A. F., Semary M. S., Hassan H. N., “An approximate solution of fractional order equations based on controlled Picard's method with Atangana–Baleanu fractional derivative”, Alexandria Eng. J., 61 (2022), 3673–3678
  8. label{b8} Gomez J. F., Torres L., Escobar R. F., Fractional Derivatives with Mittag-Leffler Kernel, Springer, 2019
  9. label{b9} Kashkari B., Syam M., “Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order”, Appl. Math. Comput., 290 (2016), 281–291
  10. label{b10} Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006
  11. label{b11} Momani S., Odibat Z. M., “Numerical comparison of methods for solving linear differential equations of fractional order”, Chaos Solitons Fractals., 31 (2007), 1248–1255
  12. label{b12} Podlubny I., Fractional Differential Equations, Academic Press, New York, 1999
  13. label{b13} Semary M. S., Hassan H. N., Radwan A. G., “Single and dual solution of fractional order differential order based on controlled Picard's method with Simpson rule”, J. Ass. Arab Univ. Basic Appl. Sci., 24:1 (2017), 247–253
  14. label{b14} Syam M. I., Al-Refai M., “Fractional differential equations Atangana–Baleanu fractional derivative: Analysis and applications”, Chaos Solitons Fractals., 10:2 (2019)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Antonov N.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).