Vortex models of shear laminar and turbulent flows
- Authors: Mironov V.L.1, Mironov S.V.1
-
Affiliations:
- Institute for Physics of Microstructures, Russian Academy of Sciences
- Issue: Vol 239 (2025)
- Pages: 32-42
- Section: Articles
- URL: https://ogarev-online.ru/2782-4438/article/view/312525
- DOI: https://doi.org/10.36535/2782-4438-2025-239-32-42
- ID: 312525
Cite item
Full Text
Abstract
About the authors
Viktor Leonidovich Mironov
Institute for Physics of Microstructures, Russian Academy of Sciences
Sergei Viktorovich Mironov
Institute for Physics of Microstructures, Russian Academy of SciencesCandidate of physico-mathematical sciences
References
- Abe H., “Poi1020-4th-A-ver2.dat”, DNS Data Base for Turbulent Channel Flow with Heat Transfer, ed. Kawamura H., https://www.rs.tus.ac.jp/t2lab/db/poi/text/Poi1020_4th_A_ver2.dat
- Ansari S., Rashid M., Waghmare P. R., Nobes D. S., “Measurement of the flow behavior index of Newtonian and shear-thinning fluids via analysis of the flow velocity characteristics in a mini-channel”, SN Appl. Sci., 2 (2020), 1787
- Boussinesq J., “Essai sur la th'eorie des eaux courantes”, J. Math. Pures Appl. Ser. 3, 4 (1878), 335–376
- Cess R. D., A Survey of the Literature on Heat Transfer in Turbulent Tube Flow, Westinghouse Research Report No. 8-0529-R24, 1958
- DNS Database of Wall Turbulence and Heat Transfer, ed. Kawamura H., https://www.rs.tus.ac.jp/t2lab/db/
- El Telbany M. M. M., Reynolds A. J., “Velocity distributions in plane turbulent channel flows”, J. Fluid Mech., 100 (1980), 1–29
- Fu T., Carrier O., Funfschilling D., Ma Y., Li H. Z., “Newtonian and Non-Newtonian flows in microchannels: inline rheological characterization”, Chem. Eng. Technol., 39 (2016), 987–992
- Hanjalic K., Launder B. E., “A Reynolds stress model of turbulence and its application to thin shear flows”, J. Fluid Mech., 52 (1972), 609–638
- Helmholtz H., “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. Reine Angew. Math., 55 (1858), 25–55
- Henry F. S., Reynolds A. J., “Analytical solution of two gradient-diffusion models applied to turbulent Couette flow”, J. Fluids Eng., 106 (1984), 211–216
- Hussain A. K. M. F., Reynolds W. C., “Measurements in fully developed turbulent channel flow”, J. Fluids Eng., 97 (1975), 568–578
- McComb W. D., “Theory of turbulence”, Rep. Progr. Phys., 58 (1995), 1117–1206
- Mironov V. L., Mironov S. V., “Generalized sedeonic equations of hydrodynamics”, Eur. Phys. J. Plus., 135 (2020), 708
- Mironov V. L., “Self-consistent hydrodynamic two-fluid model of vortex plasma”, Phys. Fluids., 33 (2021), 037116
- Mironov V. L., “Self-consistent hydrodynamic model of electron vortex fluid in solids”, Fluids., 7 (2022), 330
- Reynolds O., “On the dynamical theory of incompressible viscous fluids and the determination of the criterion”, Phil. Trans. Roy. Soc. London A., 186 (1895), 123–164
- Schmitt F. G., “About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity”, C. R. Mec., 335 (2007), 617–627
- Symon S., Madhusudanan A., Illingworth S. J., Marusic I., “Use of eddy viscosity in resolvent analysis of turbulent channel flow”, Phys. Rev. Fluids., 8 (2023), 064601
- Thurlowa E. M., Klewicki J. C., “Experimental study of turbulent Poiseuille–Couette flow”, Phys. Fluids., 12 (2000), 865–875
- Tsukahara T., “Poi070-2nd-A.dat”, DNS Data Base for Turbulent Channel Flow with Heat Transfer, ed. Kawamura H., https://www.rs.tus.ac.jp/t2lab/db/poi/text/Poi070_2nd_A.dat
- Van Driest E. R., “On turbulent flow near a wall”, J. Aeronaut. Sci., 23 (1956), 1007–1011
Supplementary files
