Formation of research competencies of future computer science teachers in their studies of artificial intelligence algorithms for analyzing data structures
- Authors: Valvakov M.A1
-
Affiliations:
- Federal State University of Education
- Issue: Vol 6, No 11 (2025)
- Pages: 114-120
- Section: ARTICLES
- URL: https://ogarev-online.ru/2712-9950/article/view/374990
- ID: 374990
Cite item
Abstract
the article is devoted to the urgent problem of forming research competencies among future computer science teachers in the context of studying artificial intelligence (AI) algorithms for analyzing data structures. The authors substantiate the need to integrate AI methods into teacher training, emphasizing their important role in developing critical thinking skills, designing educational solutions, and adapting technologies to school learning. Based on a mixed methodology (theoretical analysis, pedagogical experiment, questionnaire), an up-to-date learning model has been developed that combines the development of machine learning algorithms (clusterization, decision trees) with real-world data analysis project tasks. The results of the experiment confirmed the growth of students' abilities to independently research data, develop educational cases, and reflect on the ethical aspects of AI. Special emphasis is placed on the connection of technical skills with pedagogical practice, including the creation of digital resources for schools. The research contributes to the modernization of teacher education in the context of digitalization, offering tools for training teachers of a new formation.
References
- Борисова А.Р. Цикличные методы обучения в цифровой педагогике // Современные образовательные технологии. 2022. № 6. С. 32 – 38.
- Волков Т.К. Педагогические модели формирования исследовательских компетенций в условиях цифровизации // Информатика и образование. 2022. № 5. С. 44 – 51.
- Казанцева М.А. Этика искусственного интеллекта в педагогике: вызовы и решения // Педагогическая наука и практика. 2023. № 2. С. 25 – 32.
- Мартынова В.К. Адаптация ИИ-технологий в школьном образовании // Информационные системы в управлении. 2021. № 9. С. 65 – 72.
- Новикова Д.В. Проектирование образовательных сценариев с использованием искусственного интеллекта // Цифровые технологии в образовании. 2021. № 4. С. 60 – 68.
- Соколова Е.Р. Интеграция искусственного интеллекта в педагогическую практику // Цифровая дидактика. 2020. № 3. С. 85 – 93.
- Чижикова Е.Л. Системное мышление в подготовке учителей информатики // Педагогика и цифра. 2023. № 1. С. 39 – 45.
- Alvarez R.D. Contextualized Learning for Future Teachers: AI and Beyond // Journal of Modern Pedagogy. 2022. No. 7. P. 70 – 79.
- Garcia R.T. Metacognitive Skills Development Through Contextual Learning // International Journal of Educational Research. 2022. No. 6. P. 40 – 49.
- Johnson M.T. Risk Management in AI-Driven Educational Projects // Journal of AI in Education. 2021. No. 3. P. 54 – 61.
- Lee S.Y. Reflective Practices in AI Education // International Journal of Technology in Teaching. 2020. No. 4. P. 19 – 25.
- Mart?nez J.R. Innovation in Teacher Training: AI and Pedagogy // Educational Innovations Review. 2019. No. 12. P. 12 – 18.
- Miller K.L. AI in Teacher Education: Bridging Theory and Practice // Journal of Educational Innovation. 2020. No. 8. С. 110 – 118.
- O’Connor S.P. Digital Transformation in Teacher Training // Modern Education Review. 2019. No. 11. P. 85 – 93.
- Harper L.M. Ethical Implications of Data Analysis in Educational Contexts// International Review of Educational Research. 2023. № 4. С. 15 – 22.
- Thompson J.A. Project-Based Learning in AI Education: Bridging Theory and Practice // Journal of Educational Technology. 2021. № 12. С. 29 – 37.
Supplementary files

