Vol 28, No 141 (2023)

Original articles

On the interrelation of motions of dynamical systems in separable locally compact metric space with invariant measure

Afanas’ev A.P., Dzyuba S.M.

Abstract

In this paper, we study the interrelation between recurrent and outgoing motions of dynamical systems. An outgoing motion is a motion whose α- and ω-limit sets are either empty or non-compact. It is shown that in a separable locally compact metric space Σ with invariant Caratheodory measure, almost all points lie on trajectories of motions that are either recurrent or outgoing, i. e. in the space Σ, the set of points Γ lying on the trajectories of nonoutgoing and non-recurrent motions has measure zero. Moreover, any motion located in Γ is both positively and negatively asymptotic with respect to the corresponding compact minimal sets. The proof of this assertion essentially relies on the classical Poincare-Caratheodory and Hopf recurrence theorems. From this proof and Hopf’s theorem, it follows that in a separable locally compact metric space, there can exist non-recurrent Poisson-stable motions, but all these motions must necessarily be outgoing. At the same time, in the compact space Σ any Poisson-stable motion is recurrent.

Russian Universities Reports. Mathematics. 2023;28(141):5-12
pages 5-12 views

Numerical solution of differential-algebraic equations of arbitrary index with Riemann-Liouville derivative

Bulatov M.V., Indutskaya T.S.

Abstract

In the article, linear systems of ordinary differential equations of fractional order  are investigated. In contrast to previously known results, the authors consider the case when the matrix before the fractional differentiation operation is degenerate. Problems in such a formulation are called differential-algebraic equations of fractional order. The fundamental differences of such systems from the classical problems of fractional differentiation and integration are emphasized, namely, the systems under consideration can have an infinite number of solutions, or a solution of the original problem depends on the high fractional derivative of the right-hand side. Corresponding examples are given. The authors pass to a different, equivalent formulation of the problem, namely, they rewrite it in the form of a system of linear integral equations of the Abel type (with a weak singularity). This technique allows one to use the apparatus of regular matrix bundles to investigate the existence and uniqueness of the original problem. Using this result, the authors give sufficient conditions for the existence of a unique solution to the class of problems under consideration. Further, an algorithm for the numerical solution of such equations is proposed. The method is based on the product integration method and the quadrature formula of right rectangles. Calculations and graphs of the errors of the proposed method for various fractional differentiation exponents and various indices of the initial matrix bundles are presented.

Russian Universities Reports. Mathematics. 2023;28(141):13-25
pages 13-25 views

Properties of the average time benefit for probabilistic models of exploited populations

Woldeab M.S.

Abstract

A model of a homogeneous population given in the absence of exploitation by a differential equation x ̇=g(x) is considered. At each moment of time τk=kd, where d>0, k=1,2,..., some random share of the resource ωk[0,1] is extracted from this population. We assume that it is possible to stop the harvesting if its share turns out to be greater than a certain value u[0,1): then the share of the extracted resource will be lk=l(ωk,u)=min(ωk,u), k=1,2,.... The average time benefit from resource extraction is investigated, it is equal to the lower limit of the arithmetic amount of the resource obtained in n extractions as n. It is shown that the properties of this characteristic are associated with the presence of a positive fixed point of the difference equation X(k+1)=φ(d,(1-u)Xk), k=1,2,..., where φ(t,x) is a solution of the equation x ̇=g(x) satisfying the initial condition . The conditions for the existence of the limit and the estimates of the average time benefit performed with probability one are obtained. The results of the work are illustrated by examples of exploited homogeneous populations depending on random parameters.

Russian Universities Reports. Mathematics. 2023;28(141):26-38
pages 26-38 views

Dynamic properties of one impulse Cauchy problem

Ivanovsky L.I.

Abstract

A model of a fully connected association of neurons with a synaptic electrical connection which is a system of m differential equations with delay is considered. By a special substitution, this system is reduced to a system of impulsive ordinary differential equations. For the corresponding dynamical system in the case m=3, we study the existence, stability, and asymptotic representation of periodic solutions on the basis of a bifurcation analysis of a two-dimensional mapping, a shift operator along trajectories of a solution to a special system of two differential equations. Particular attention is paid to the number of coexisting stable regimes. We study the problem of finding parameters for which the number of such modes is maximum. In order to search the fixed points of the resulting two-dimensional mapping, a numerical study is used based on the following iterative procedure. Selected the starting point, the Runge-Kutta method with a given step calculates the solution values on the segment [0,T]. At the end point T of this segment, the solution value is compared with the initial one and if the deviation exceeds the specified value, then the value at the end point is taken as the initial one and the calculation cycle by the Runge-Kutta method is repeated. The calculations terminate when the required small deviation is reached, i.e., a fixed point of the shift operator is found, and so is the corresponding stable periodic mode, or when the number of iterations reaches a given large number, and this indicates the absence of a fixed point. The paper presents the results of a numerical study that made it possible to demonstrate the main rearrangements occurring in the phase space of a two-dimensional mapping. The obtained fixed points allow us to find asymptotic stable solutions of the original problem.

Russian Universities Reports. Mathematics. 2023;28(141):39-50
pages 39-50 views

Existence and uniqueness of solutions to stochastic fractional differential equations in multiple time scales

Ponosov A.

Abstract

A novel class of nonlinear stochastic fractional differential equations with delay and the Jumarie and Ito differentials is introduced in the paper. The aim of the study is to prove existence and uniqueness of solutions to these equations. The main results of the paper generalise some previous findings made for the non-delay and three-scale equations under additional restrictions on the fractional order of the Jumarie differentials, which are removed in our analysis. The techniques used in the paper are based on the properties of the singular integral operators in specially designed spaces of stochastic processes, the representation of delay equations as functional differential equations as well as Picard’s iterative method.

Russian Universities Reports. Mathematics. 2023;28(141):51-59
pages 51-59 views

On the continuum spectra of the oscillation exponents of linear homogeneous differential systems

Stash A.K.

Abstract

The research subject of this work is at the junction of two sections of the qualitative theory of differential equations, namely: the theory of Lyapunov exponents and the theory of oscillation. In this paper, we study the spectra (i. e., sets of different values on nonzero solutions) of the exponents of oscillation of signs (strict and nonstrict), zeros, roots, and hyperroots of linear homogeneous differential systems with coefficients continuous on the positive semiaxis. For any n2, the existence of an -dimensional differential system with continuum spectra of the oscillation exponents is established. For even n, the spectra of all the oscillation exponents fill the same segment of the numerical axis with predetermined arbitrary positive incommensurable ends, and for odd n, zero is added to the indicated spectra. It turns out that for each solution of the constructed differential system, all the oscillation exponents coincide with each other. When proving the results of this work, the cases of even and odd n are considered separately. The results obtained are theoretical in nature, they expand our understanding of the possible spectra of oscillation exponents of linear homogeneous differential systems.

Russian Universities Reports. Mathematics. 2023;28(141):60-67
pages 60-67 views

About operator functions of an operator variable

Fomin V.I.

Abstract

A family of operator functions for which the domain and the range of values are included in the real Banach algebra of bounded linear operators acting in a real Banach space is considered. Such functions find application in the study of linear differential equations in a Banach space. Known operator functions are studied: exponential, sine, cosine, hyperbolic sine, hyperbolic cosine determined by the sums of the corresponding operator power series. For the functions of sine, cosine, hyperbolic sine, hyperbolic cosine, addition formulas are indicated, from which there follow the formulas for transforming the product of operator trigonometric functions and operator hyperbolic functions into a sum as well as those for transforming the sum and difference of operator trigonometric functions of the same name and operator hyperbolic functions of the same name into a product. The basic operator hyperbolic identity is proved. The concepts of the following operator functions are introduced: tangent, cotangent, secant, cosecant, hyperbolic tangent, hyperbolic cotangent, hyperbolic secant, hyperbolic cosecant. The periodicity of operator trigonometric functions of sine, cosine, tangent, cotangent, and the reduction formulas for them are proved. Relationships between operator functions of tangent and cotangent, hyperbolic tangent and hyperbolic cotangent are found. One useful application of the obtained operator trigonometric formulas is pointed out: it is proved that the operator functions Y1(t)="sin"Bt, Y2(t)="cos"Bt are infinitely differentiable on R; formulas for the derivatives of any order of these functions are found.

 

Russian Universities Reports. Mathematics. 2023;28(141):68-89
pages 68-89 views

Program complex for modelling a manipulating robot

Rain T.

Abstract

The article proposes the development of a software module for modeling the kinematics and dynamics of a manipulator with five degrees of freedom. To solve the forward kinematics problem of the manipulator, the Denavit–Hartenberg method was used. To solve the inverse kinematics and dynamics problem of the manipulator, analytical methods (the Levenberg-Marquardt method, the Newton–Euler method) and a soft computing method (adaptive neurofuzzy inference system) were used. The software module for modeling the kinematics and dynamics of the manipulator was developed using the software package of the SolidWorks computer-aided design system and the MatLab program. The developed software module is able to simulate the kinematics and dynamics of the manipulator based on the described methods, visualize the simulation results, generate a trajectory for the target position and orientation of the end-effector of the manipulator, simulate the movement of the manipulator along a given trajectory.

Russian Universities Reports. Mathematics. 2023;28(141):90-96
pages 90-96 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».