ОКРЕСТНОСТНОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ОЧИСТКИ СТОЧНЫХ ВОД

Обложка

Цитировать

Полный текст

Аннотация

В работе даны определения производственных и хозбытовых сточных вод, перечислены их основные виды и состав. Описана основная задача очистных сооружений, представлена система очистки сточных вод, приведены ее компоненты. Цель написания данной работы заключается в прогнозировании состава смешанных сточных вод, поступающих от населения и промышленных предприятий в централизованную систему водоотведения, после очистки на основе динамических линейных и квадратичных окрестностных моделей. Работа актуальна, так как перед сливом сточных вод в водоем необходимо убедиться, что содержащиеся в их составе примеси и загрязняющие вещества не превышают допустимой нормы. В работе процесс очистки сточных вод представлен в виде динамической окрестностной модели, состоящей из пяти узлов. Рассмотрены линейные и квадратичные динамические окрестностные модели. Приведены уравнения пересчета состояний и выходов для промежуточных и выходных узлов окрестностных моделей. Выполнена идентификация линейных и квадратичных динамических окрестностных моделей очистки сточных вод, вычислены средние абсолютные ошибки идентификации. Произведено сравнение результатов линейной и квадратичной динамических окрестностных моделей и сделан вывод.

Об авторах

Анатолий Михайлович Шмырин

Липецкий государственный технический университет

Email: amsh@lipetsk.ru
доктор технических наук, профессор, заведующий кафедрой высшей математики г. Липецк, Российская Федерация

Ирина Александровна Седых

Липецкий государственный технический университет

Email: sedykh-irina@yandex.ru
кандидат физико-математических наук, доцент кафедры высшей математики г. Липецк, Российская Федерация

Анастасия Михайловна Сметанникова

Липецкий государственный технический университет

Email: n.smetannickowa@yandex.ru
студент, физико-технологический факультет г. Липецк, Российская Федерация

Екатерина Юрьевна Никифорова

ОГУП «Липецкоблводоканал»

Email: niki291279@yandex.ru
главный технолог г. Липецк, Российская Федерация

Список литературы

  1. Блюмин С.Л., Шмырин А.М., Шмырина О.А. Билинейные окрестностные системы. Липецк: ЛГТУ, 2006. 130 с.Шмырин A.M., Седых И.А. Классификация билинейных окрестностных моделей // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2012. T. 17. Вып. 5. C. 1366-1369.Шмырин А.М., Седых И.А., Щербаков А.П. Общие билинейные дискретные модели // Вестник Воронежского государственного технического университета. Воронеж, 2014. Т. 10. Вып. 3-1. С. 44-49.Шмырин А.М., Седых И.А. Дискретные модели в классе окрестностных систем // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2012. T. 17. Вып. 3. C. 867-871.Shmyrin A., Sedykh I. Алгоритмы идентификации и управления функционированием окрестностных систем, полученных на основе сетей Петри // Управление большими системами, 2009. Вып. 24. С. 18-33.Седых И.А. Окрестностное моделирование мультиагентных систем // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2013. T. 18. Вып. 5-2. C. 2667-2668.Седых И.А. Параметрическая идентификация линейной динамической окрестностной модели // Сб. ст. Международной научно-практической конференции «Инновационная наука: прошлое, настоящее, будущее». Уфа: АЭТЕРНА, 2016. С. 12-19.Седых И.А., Сметанникова А.М. Параметрическая идентификация окрестностной модели с помощью генетического алгоритма и псевдообращения // Интерактивная наука. 2017. T. 4. Вып. 14. С. 113-116.Зайнуллин Р.Р., Галяутдинов А.А. Проблемы очистки городских сточных вод // Инновационная наука. 2016. Вып. 6-2. С. 68-69.Калимуллина Д.Д., Гафуров А.М. Потребности в водоснабжении и водоотведении на тепловых электрических станциях // Инновационная наука. 2016. Вып. 3-3. С. 98-100.Морозенко М.И., Никулина С.Н., Черняев С.И. Коагуляционная очистка сточных вод металлургического предприятия // Фундаментальные исследования. 2016. Вып. 12-2. С. 318-323.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).