Solution of the Cauchy problem for a degenerate second order differential equation in a Banach space

Cover Page

Cite item

Abstract

This article is devoted to the study of the Cauchy problem for a second-order differential equation with a non-invertible operator at the highest derivative, as a result of which, the solution exists not for every initial value. This operator is Fredholm with a zero index. The cascade splitting method is used to solve the problem. This method splits the equation and conditions into the corresponding equation and conditions in subspaces of smaller dimensions. The case of invertibility of some operator constructed by using the operator coefficients of the equation is investigated. The conditions under which a solution to the problem exists and is unique are determined; it is found in the analytical form.

About the authors

Vladimir I. Uskov

Voronezh State University of Forestry and Technologies after named G.F. Morozov

Author for correspondence.
Email: vum1@yandex.ru
ORCID iD: 0000-0002-3542-9662

Candidate of Physics and Mathematics, Senior Lecturer of the Mathematics Department

Russian Federation, 8 Timiryazeva St., Voronezh 394613, Russian Federation

References

  1. M.M. Cavalcanti, V.N. Domingos Cavalcanti, J. Ferreira, “Existence and uniform decay for a non-linear viscoelastic equation with strong damping”, Mathematical Methods in the Applied Sciences, 24:14 (2001), 1043–1053.
  2. S.S. Orlov, “The continuous solutions of a singular integro-differential equation of the second order in Banach spaces”, Bulletin of Irkutsk State University. Series Mathematics, 2:1 (2009), 328–332 (In Russian).
  3. V.I. Uskov, “Solution of a second-order algebro-differential equation in a banach space”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:140 (2022), 375–385 (In Russian).
  4. V.I. Uskov, “Cauchy problem for a sedond-order degeneracy differential equation in a Banach space”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2023, №4, 70–80 (In Russian).
  5. P.I. Popikov, A.V. Zlenko, A.F. Petkov, V.P. Popikov, V.I. Uskov, R.G. Borovikov, “Prediction of changes in kinematic and dynamic parameters of a new design of auger soil thrower based on the author’s methodology”, Lesotekhnicheskii zhurnal [Forestry Engineering Journal], 14:3(55) (2024), 204–221 (In Russian).
  6. S. Nikolsky, “Linear equations in normed linear spaces”, Izv. Math., 7:3 (1943), 147–166 (In Russian).
  7. S.P. Zubova, V.I. Uskov, “Asymptotic solution of the Cauchy problem for a first-order equation with a small parameter in a banach space. The regular case”, Math. Notes, 103:3 (2018), 395–404.
  8. S.G. Krein, Linear Differential Equations in Banach Space, Nauka Publ., Moscow, 1967 (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).