ABOUT THE BANACH ALGEBRA OF COMPLEX OPERATORS

Cover Page

Cite item

Full Text

Abstract

The Banach algebra of complex operators that are used in the study of linear differential equations with constant bounded operator coefficients in a Banach space is consiuder.

Full Text

При изучении в банаховом пространстве E задачи Коши
×

About the authors

Vasiliy Ilyich Fomin

Tambov State Technical University

Email: vasiliyfomin@bk.ru
Candidate of Physics and Mathematics, Associate Professor of the Technical Mechanics and Machine Parts Department 106 Sovetskaya St., Tambov 392000, Russian Federation

References

  1. Фомин В.И. О решении задачи Коши для линейного дифференциального уравнения второго порядка в банаховом пространстве // Дифференциальные уравнения. 2002. Т. 38. № 8. С. 1140-1141.
  2. Фомин В.И. О линейном дифференциальном уравнении второго порядка в банаховом пространстве в случае негативного операторного дискриминанта // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2008. Т. 13. Вып. 1. С. 38-42.
  3. Функциональный анализ / под ред. С.Г. Крейна. М.: Наука, 1972. 544 с.
  4. Треногин В.А. Функциональный анализ. М.: Наука, 1980. 496 с.
  5. Данфорд Н., Шварц Дж. Линейные операторы. Общая теория. М.: Издательство иностранной литературы, 1962. 896 с.
  6. Фомин В.И. Об общем решении линейного дифференциального уравнения n-го порядка с постоянными ограниченными операторными коэффициентами в банаховом пространстве // Дифференциальные уравнения. 2005. Т. 41. № 5. С. 656-660.
  7. Фомин В.И. О линейном дифференциальном уравнении n-го порядка в банаховом пространстве со специальной правой частью // Дифференциальные уравнения. 2009. Т. 45. № 10. С. 1518-1520.
  8. Фомин В.И. О случае кратных корней характеристического операторного многочлена линейного однородного дифференциального уравнения n -го порядка в банаховом пространстве // Дифференциальные уравнения. 2007. Т. 43. № 5. С. 710-713.
  9. Далецкий Ю.Л., Крейн М.Г. Устойчивость решений дифференциальных уравнений в банаховом пространстве. М.: Наука, 1970. 536 с.
  10. Фомин В.И. О случае комплексных характеристических операторов линейного однородного дифференциального уравнения n-го порядка в банаховом пространстве // Современные методы теории функций и смежные проблемы: материалы конференции. Воронеж: ВГУ, 2007. С. 231-232.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».