МОДЕЛИ МОНИТОРИНГА И УПРАВЛЕНИЯ РИСКОМ В ГАУССОВСКИХ СТОХАСТИЧЕСКИХ СИСТЕМАХ

Обложка

Цитировать

Полный текст

Аннотация

Описана модель риска многомерных стохастических систем. Она основана на гипотезе, состоящей в том, что риск характеризуется вероятностными свойствами компонент системы, в качестве которых используют факторы риска. Исследован случай гауссовских стохастических систем. Модель мониторинга риска позволяет оценивать текущий риск системы и вклад в него всех ее компонент. Модели управления риском представляют собой оптимизационные задачи. В качестве целевых функций могут использоваться условный минимум риска и достижение им заданного уровня при минимальных изменениях вероятностных характеристик системы.

Полный текст

Исследование безопасности сложных систем опирается на теорию риска. В широком смысле под риском понимают возможную опасность какого-либо неблагоприятного исхода. Реальные системы, как правило, являются многомерными, их функционирование во многом носит стохастический характер, у них часто можно выделить десятки различных факторов риска [1].
×

Об авторах

Александр Николаевич Тырсин

ФГАОУ ВО «Уральский федеральный университет им. первого Президента России Б.Н. Ельцина»

Email: at2001@yandex.ru
доктор технических наук, зав. кафедрой прикладной математики 620002, Российская Федерация, г. Екатеринбург, ул. Мира, 19

Альфия Адгамовна Сурина

ФГАОУ ВО «Южно-Уральский государственный университет (национальный исследовательский университет)»

Email: dallila87@mail.ru
аспирант, кафедра прикладной математики и программирования 454080, Российская Федерация, г. Челябинск, пр. Ленина, 76

Список литературы

  1. Воробьев Ю.Л., Малинецкий Г.Г., Махутов Н.А. Управление риском и устойчивое развитие: Человеческое измерение // Известия высших учебных заведений. Прикладная нелинейная динамика. 2000. Т. 8. № 6. С. 12-26.
  2. Вишняков Я.Д., Радаев Н.Н. Общая теория рисков. М.: Академия, 2008. 368 с.
  3. Тырсин А.Н., Сурина А.А. Моделирование риска в многомерных стохастических системах // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2017. № 2 (39). С. 65-72.
  4. Гнеденко Б.В. Курс теории вероятностей. М.: Эдиториал УРСС, 2005. 448 с.
  5. Пантелеев А.В., Летова Т.А. Методы оптимизации в примерах и задачах. М.: Высшая школа, 2008. 544 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).