ON A CONTROLLABILITY PROBLEM FOR A DIFFERENTIAL INCLUSION WITH FRACTIONAL DERIVATIVES OF CAPUTO

Cover Page

Cite item

Full Text

Abstract

The paper gives the controllability problem for a differential inclusion of fractional order in a Banach space.

Full Text

Исследование управляемых систем с нелинейными звеньями является важным разделом современной математической теории управления, имеющим многочисленные приложения (см. работы [1-3]).
×

About the authors

Garik Gagikovich Petrosyan

Voronezh State Pedagogical University

Email: garikpetrosyan@yandex.ru
Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of Higher Mathematics 86 Lenin St., Voronezh 394043, Russian Federation

Oxana Yur’evna Koroleva

School No. 51

Email: korolevamatematika@mail.ru
Teacher of Mathematic 66 Zagorodnaya St., Voronezh 394019, Russian Federation

References

  1. Kamenskii M., Obukhovskii V., Petrosyan G., Yao J.-C. Оn semilinear fractional order differential inclusions in banach spaces // Fixed Point Theory. 2017. Vol. 18. № 1. P. 269-292.
  2. Kamenskii M., Obukhovskii V., Petrosyan G., Yao J.-C. Boundary value problems for semilinear differential inclusions of fractional order in a Banach space // Applicable Analysis. 2017. Vol. 96. P. 1-21.
  3. Обуховский В.В., Петросян Г.Г. О задаче Коши для функционально-дифференциального включения дробного порядка с импульсными характеристиками в банаховом пространстве // Вестник ВГУ. Серия: Физика. Математика. 2013. № 1. С. 192-209.
  4. Петросян Г.Г., Афанасова М.С. О задаче Коши для дифференциального включения дробного порядка с нелинейным граничным условием // Вестник ВГУ. Серия: Физика. Математика. 2017. № 1. С. 135-151.
  5. Петросян Г.Г. О нелокальной задаче Коши для функционально-дифференциального уравнения с дробной производной в банаховом пространстве // Вестник ВГУ. Серия: Физика. Математика. 2012. № 2. С. 207-212.
  6. Petrosyan G.G. Оn the structure of the solutions set of the Cauchy problem for a differential inclusions of fractional order in a Banach space // Некоторые вопросы анализа, алгебры, геометрии и математического образования. Воронеж, 2016. С. 7-8.
  7. Борисович Ю.Г., Гельман Б.Д., Мышкис А.Д., Обуховский В.В. Введение в теорию многозначных оторбажений и дифференциальных включений. Изд. 2-е, испр. и доп. М.: Книжный дом ≪Либроком≫, 2011.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).