Релаксации игровой задачи сближения, связанные с альтернативой в дифференциальной игре сближения-уклонения

Обложка
  • Авторы: Ченцов А.Г.1,2
  • Учреждения:
    1. ФГБУН «Институт математики и механики им. Н. Н. Красовского» Уральского отделения Российской академии наук
    2. ФГАОУ ВО «Уральский федеральный университет им. первого Президента России Б. Н. Ельцина»
  • Выпуск: Том 25, № 130 (2020)
  • Страницы: 196-244
  • Раздел: Статьи
  • URL: https://ogarev-online.ru/2686-9667/article/view/295077
  • DOI: https://doi.org/10.20310/2686-9667-2020-25-130-196-244
  • ID: 295077

Цитировать

Полный текст

Аннотация

Рассматривается дифференциальная игра (ДИ) сближения-уклонения на конечном промежутке времени, в которой в качестве параметров используются целевое множество (ЦМ) и множество, определяющее фазовые ограничения (ФО). Игрок I; заинтересованный в осуществлении сближения с ЦМ при соблюдении ФО, использует многозначные квазистратегии (неупреждающие стратегии), а игрок II; имеющий противоположную цель, - стратегии с неупреждающим выбором моментов коррекции и конечным числом таких моментов. Постановка на содержательном уровне соответствует теореме об альтернативе Н. Н. Красовского и А. И. Субботина. Для позиций, не принадлежащих множеству позиционного поглощения, представляет интерес определение наименьшего размера окрестностей множеств-параметров, при которых игрок I гарантирует сближение при ослабленных вышеупомянутым способом условиях задачи. В работе эта схема дополняется элементами приоритетности в вопросах достижения ЦМ и соблюдения ФО, что достигается введением специального параметра, определяющего соотношение размеров соответствующих окрестностей. В этих условиях функция оптимального размера окрестности ЦМ, определенная на пространстве позиций, реали зуется посредством процедуры на основе метода программных итераций, применяемого в двух вариантах. Упомянутая функция является при этом неподвижной точкой одного из используемых «программных» операторов. Указан специальный тип функционалов качества, для которого значения вышеупомянутой функции позиции совпадают с ценой игры на минимакс-максимин.

Об авторах

Александр Георгиевич Ченцов

ФГБУН «Институт математики и механики им. Н. Н. Красовского» Уральского отделения Российской академии наук; ФГАОУ ВО «Уральский федеральный университет им. первого Президента России Б. Н. Ельцина»

Email: chentsov@imm.uran.ru
доктор физико-математических наук, член-корреспондент РАН, главный научный сотрудник; профессор 620108, Российская Федерация, г. Екатеринбург, ул. Софьи Ковалевской, 16; 620002, Российская Федерация, г. Екатеринбург, ул. Мира, 19

Список литературы

  1. Р. Айзекс, Дифференциальные игры, Мир, М., 1967.
  2. Н.Н. Красовский, А. И. Субботин, “Альтернатива для игровой задачи сближения”, Прикладная математика и механика, 34:6 (1970), 1005-1022.
  3. Н.Н. Красовский, А.И. Субботин, Позиционные дифференциальные игры, М., Наука, 1974.
  4. Н.Н. Красовский, Игровые задачи о встрече движений, Физматлит, М., 1970.
  5. А.В. Кряжимский, “К теории позиционных дифференциальных игр сближения - уклонения”, Докл. АН СССР, 239:4 (1978), 779-782.
  6. А.И. Субботин, Минимаксные неравенства и уравнения Гамильтона-Якоби, Наука, М., 1991.
  7. A.I. Subbotin, Generalized Solutions of First-Order PDES. The Dynamical Optimization Perspective, BirkhЁauser, Boston-Basel-Berlin, 1995.
  8. А.И. Субботин, Обобщенные решения уравнений в частных производных первого порядка. Перспективы динамической оптимизации, Институт компьютерных иследований, Москва-Ижевск, 2003.
  9. А.И. Субботин, “Об одном свойстве субдифференциала”, Матем. сб., 182:9 (1991), 1315-1330.
  10. А.Г. Ченцов, “О структуре одной игровой задачи сближения”, Докл. АН СССР, 224:6 (1975), 1272-1275.
  11. А.Г. Ченцов, “К игровой задаче наведения с информационной памятью”, Докл. АН СССР, 227:2 (1976), 306-308.
  12. А.Г. Ченцов, “Об игровой задаче сближения в заданный момент времени”, Матем. сб., 99(141):3 (1976), 394-420.
  13. А.Г. Ченцов, “Об игровой задаче сближения к заданному моменту времени”, Изв. АН СССР. Сер. матем., 42:2 (1978), 455-467.
  14. В.И. Ухоботов, “Построение стабильного моста для одного класса линейных игр”, Прикладная математика и механика, 41:2 (1977), 358-364.
  15. С.В. Чистяков, “К решению игровых задач преследования”, Прикладная математика и механика, 41:5 (1977), 825-832.
  16. А.И. Субботин, А.Г. Ченцов, “Итерационная процедура построения минимаксных и вязкостных решений”, Доклады Академии наук, 348:6 (1996), 736-739.
  17. А.Г. Ченцов, Д.М. Хачай, “Релаксация дифференциальной игры сближения-уклонения и методы итераций”, Тр. ИММ УрО РАН, 24, 2018, 246-269.
  18. A.G. Chentsov, D.M. Khachay, “Program Iterations Method and Relaxation of a Pursuit-Evasion Differential Game”, Advanced Control Techniques in Complex Engineering Systems: Theory and Applications. V. 203: Studies in Systems, Decision and Control, 2019, 129-161.
  19. А.И. Субботин, А.Г. Ченцов, Оптимизация гарантии в задачах управления, М., Наука, 1977.
  20. А.Г. Ченцов, “Метод программных итераций в игровой задаче наведения”, Тр. ИММ УрО РАН, 22, 2016, 304-321.
  21. К. Куратовский, А. Мостовский, Теория множеств, М., Мир, 1970.
  22. J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1977.
  23. A.G. Chentsov, S. I. Morina, Extensions and Relaxations, Kluwer Acad. Publ., Dordrecht-Boston-London, 2002.
  24. Н. Данфорд, Дж.Т. Шварц, Линейные операторы. Общая теория, Изд-во иностр. лит., М., 1962.
  25. П. Биллингсли, Сходимость вероятностных мер, М., Наука, 1977.
  26. Р. Энгелькинг, Общая топология, Мир, М., 1986.
  27. В.И. Богачев, Основы теории меры. Т. 2, НИЦ «Регулярная и хаотическая динамика», М.-Ижевск, 2003.
  28. В.И. Богачев, Слабая сходимость мер, Институт компьютерных исследований, М.-Ижевск, 2016.
  29. А.Г. Ченцов, “Итерации стабильности и задача уклонения с ограничением на число переключений”, Тр. ИММ УрО РАН, 23, 2017, 285-302.
  30. Ж. Дьедонне, Основы современного анализа, Мир, М., 1964.
  31. A.Г. Ченцов, Деп. в ВИНИТИ, 1933-79, Уральский политехнический институт им. С. М. Кирова, Свердловск, 1979.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».