On connection between continuous and discontinuous neural field models with microstructure: II. Radially symmetric stationary solutions in 2D (“bumps”)
- Authors: Burlakov E.O.1, Malkov I.N.2
-
Affiliations:
- Derzhavin Tambov State University
- University of Tyumen
- Issue: Vol 25, No 129 (2020)
- Pages: 6-17
- Section: Articles
- URL: https://ogarev-online.ru/2686-9667/article/view/295062
- DOI: https://doi.org/10.20310/2686-9667-2020-25-129-6-17
- ID: 295062
Cite item
Full Text
Abstract
About the authors
Evgenii O. Burlakov
Derzhavin Tambov State University
Email: eb_@bk.ru
PhD, Researcher at the Research and Educational Center “Fundamental Mathematical Research” 33 Internatsionalnaya St., Tambov 392000, Russian Federation
Ivan N. Malkov
University of Tyumen
Email: i.n.malkov@yandex.ru
Student of the Institute of Mathematics and Computer Science 6 Volodarskogo St., Tyumen 625003, Russian Federation
References
- Е.О.Бурлаков, М.А.Насонкина,“О связи непрерывных и разрывных моделей нейронных полей с микроструктурой: I. Общая теория”, Вестник Тамбовского университета. Серия: естественные и технические науки, 23:121(2018), 17-30.
- S. Bochner, K. Chandrasekharan, Fourier Transforms, Princeton University Press, New Jersey, 1949.
- E. Burlakov, E. Zhukovskiy, A. Ponosov, J. Wyller, “Ow well-posedness of generalized neural field equations with delay”, Journal of Abstract Differential Equations and Applications, 6:1 (2015), 51-80.
- A. Granas, “The Leray-Schauder index and the fixed point theory for arbitrary ANRs”, Bulletin de la Societe Mathematique de France, 100 (1972), 209-228.
- N. Svanstedt, J.L. Woukeng, “Homogenization of a Wilson-Cowan model for neural fields”, Nonlinear Analysis. Real World Applications, 14:3 (2013), 1705-1715.
- N. Svanstedt, J. Wyller, E. Malyutina, “A one-population Amari model with periodic microstructure”, Nonlinearity, 27 (2014), 1394-1417.
Supplementary files
