Antiperiodic boundary value problem for an implicit ordinary differential equation

Cover Page

Cite item

Full Text

Abstract

The paper is devoted to the investigation of the antiperiodic boundary value problem for an implicit nonlinear ordinary differential equation f t; x; x =0, x0 +x(τ)=0. We assume that the mapping f:R×Rn ×Rn →Rk defining the equation under consideration is smooth and satisfies the condition of uniform nondegeneracy of the first derivative infcovf v ' t,x,v : t,x,v ∈R×Rn ×Rn >0. Here cov A is the Banach constant of the linear operator A . The assumption of uniform nondegeneracy holds, in particular, for the mapping f defining an explicit ordinary differential equation. For implicit equations, sufficient conditions for the existence of a solution to an antiperiodic boundary value problem are obtained, and estimates for solutions are found. Corollaries for normal ordinary differential equations are formulated. To prove the main result, the original implicit equation is reduced to an explicit differential equation by applying a nonlocal implicit function theorem. Then we prove an auxiliary assertion on the solvability of the equation x + ψx =0, which is an analog of Brouwer’s fixed point theorem. It is shown that the mapping ψ, that assigns the value of the solution of the Cauchy problem at the point τ to an arbitrary initial point x 0 , is well defined and satisfies the assumptions of the auxiliary statement. This reasoning completes the proof of the existence of a solution to the boundary value problem.

About the authors

Aram V. Arutyunov

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: arutyunov@cs.msu.ru
Doctor of Physical and Mathematical Sciences, Chief Researcher 65 Profsoyuznaya St., Moscow 117997, Russian Federation

Zukhra T. Zhukovskaya

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: zyxra2@yandex.ru
Candidate of Physics and Mathematics, Senior Researcher 65 Profsoyuznaya St., Moscow 117997, Russian Federation

Sergey E. Zhukovskiy

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: s-e-zhuk@yandex.ru
Doctor of Physics and Mathematics, Leading Researcher 65 Profsoyuznaya St., Moscow 117997, Russian Federation

References

  1. Е.Р. Аваков, А.В. Арутюнов, Е.С. Жуковский, “Накрывающие отображения и их приложения к дифференциальным уравнениям, не разрешенным относительно производной”, Дифференциальные уравнения, 45:5 (2009), 613-634.
  2. А.В. Арутюнов, С.Е. Жуковский, “Применение методов обыкновенных дифференциальных уравнений для глобальных теорем об обратной функции”, Дифференциальные уравнения, 55:4 (2019), 452-463.
  3. L. Nirenberg, Topics in Nonlinear Functional Analysis, American Mathematical Society, New York-London, 2001.
  4. Дж. Варга, Оптимальное управление дифференциальными и функциональными уравненимями, Наука, М., 1977.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).