ON ASYMPTOTIC PROPERTIES OF DISTANCE CORRELATION WITH CENSORED RESPONSE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider asymptotic properties of the empirical correlation coefficient with survival response, based on the famous distance correlation and initially proposed in [1]. We show that this empirical coefficient is consistent and asymptotically normal for corresponding correlation measure and, if the survival time and uncensored feature are independent, establish its convergence to a Gaussian chaos.

About the authors

I. V. Rodionov

Institute for Information Transmission Problems (Kharkevich Institute) of RAS

Email: vecsell@gmail.com
Moscow, Russia

References

  1. Edelmann D., Hummel M., Hielscher T., Saadati M., Benner A. Marginal variable screening for survival endpoints // Biometrical Journal. 2020. V. 62. No. 3. P. 610–626.
  2. Fan J., Lv J. Sure independence screening for ultrahigh dimensional feature space // Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2008. V. 70. No. 5. P. 849–911.
  3. Gorst-Rasmussen A., Scheike T. Independent screening for single-index hazard rate models with ultrahigh dimensional features // Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2013. V. 75. No. 2. P. 217–245.
  4. Song R., Lu W., Ma S., Jessie Jeng X. Censored rank independence screening for high-dimensional survival data // Biometrika. 2014. V. 101. No. 4. P. 799–814.
  5. Szekely G.J., Rizzo M.L., Bakirov N.K. Measuring and testing dependence by correlation of distances // Annals of Statistics. 2007. V. 35. No. 6. P. 2769–2794.
  6. Pan W., Wang X., Zhang H., Zhu H., Zhu J. Ball covariance: a generic measure of dependence in Banach space // Journal of the American Statistical Association. 2020. V. 115. No. 529. P. 307–317.
  7. Chatterjee S. A new coefficient of correlation // Journal of American Statistical Association. 2021. V. 116. No. 536. P. 2009–2022.
  8. Chen X., Chen X., Wang H. Robust feature screening for ultra-high dimensional right censored data via distance correlation // Computational Statistics & Data Analysis. 2018. V. 119. No. 3. P. 118–138.
  9. Szekely G.J., Rizzo M.L. Brownian distance covariance // Annals of Applied Statistics. 2009. V. 3. No. 4. P. 1236–1265.
  10. Lyons R. Distance covariance in metric spaces // Annals of Probability. 2013. V. 41. No. 5. P. 3284–3305.
  11. Huo X., Szekely G.J. Fast computing for distance covariance // Technometrics. 2016. V. 58. No. 4. P. 435–447.
  12. Serfling R. Approximation Theorems in Mathematical Statistics. Hoboken, US: John Wiley & Sons, 1980. 371 p.
  13. Andersen P., Borgan O., Gill R., Keiding N. Statistical Models Based on Counting Processes. N.Y.: Springer, 1993. 706 p.
  14. van der Vaart A. Asymptotic statistics. Cambridge: Cambridge University Press, 1998. 443 p.
  15. Barber R.F. Hoeffding and Bernstein inequalities for weighted sums of exchangeable random variables // Electronic Communications in Probability. 2024. V. 29. P. 1–13.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).