SINGLE POINT PENALIZATION FOR SYMMETRIC LEVY PROCESSES
- Authors: Abildaev T.E.1,2
-
Affiliations:
- St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
- Saint Petersburg State University
- Issue: Vol 525, No 1 (2025)
- Pages: 47-51
- Section: MATHEMATICS
- URL: https://ogarev-online.ru/2686-9543/article/view/356784
- DOI: https://doi.org/10.7868/S3034504925050068
- ID: 356784
Cite item
Abstract
We consider a one-dimensional symmetric Levy process ξ(t), t ≥ 0, that has local time, which we denote by L(t, x), and construct the operator A + μ δ(x − a), μ > 0, where A is the generator of ξ(t), and δ(x − a) is the Dirac delta function at a ∈ ℝ. We show that the constructed operator is the generator of (Ut)t ≥ 0 – C0-semigroup on L2(ℝ), which is given by (Ut f)(x) = E f (x − ξ(t)) eμ L(t,x−a), f ∈ L2(ℝ) ∩ Cb(ℝ), and prove the Feynman–Kac formula for the delta function-type potentials. Furthermore, we construct a family of penalized distributions {QT,xμ}T ≥ 0 of form QT,xμ = eμ L(T,x−a) / Eeμ L(T,x−a) PT,x, where PT,x is the measure of the process ξ(t), t ≤ T. We show that this family weakly converges to a Feller process as T → ∞, study the Feynman–Kac semigroup generated by this Feller process and prove a limit theorem for the distribution of ξ(T) under QT,x.
About the authors
T. E. Abildaev
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences; Saint Petersburg State University
Email: tabildaev23@gmail.com
Saint Petersburg, Russian Federation
References
- Applebaum D. Levy Processes and Stochastic Calculus. Cambridge University Press, 2009.
- Bertoin J. Levy Processes. Cambridge University Press, 1996.
- Rogers L. C. G., Williams D. Diffusions, Markov Processes, and Martingales. Volume 1: Foundations. Cambridge University Press, 2000.
- Бородин А. Н., Ибрагимов И. А. Предельные теоремы для функционалов от случайных блужданий // Тр. МИАН СССР. 1994. Т. 195. 3–285.
- Lorinczi J., Hiroshima F., Betz V. Feynman-Kac-Type Theorems and Gibbs Measures on Path Space: With Applications to Rigorous Quantum Field Theory. De Gruyter, 2011.
- Roynette B., Vallois P., Yor M. Limiting laws associated with Brownian motion perturbed by normalized exponential weights, I // Studia Scientiarum Mathematicarum Hungarica. 2005. T. 43. № 2. 171–246.
- Cranston M., Molchanov S., Squartini N. Point potential for the generator of a stable process // Journal of Functional Analysis. 2014. T. 3. № 1. 1238–1256.
- Ибрагимов И.А., Смородина Н.В., Фаддеев М.М. О некоторых свойствах дробной производной броуновского локального времени // Труды МИАН. 2024. T. 324. 109–123.
- Ибрагимов И.А., Смородина Н.В., Фаддеев М.М. Одно замечание к формуле Ито // Теория вероятн. и ее примен. 2024. T. 69. 285–304.
- Takeda S., Yano K. Local time penalizations with various clocks for Levy processes. // Electron. J. Probab. 2023. T. 28. 1–35.
- Бирман М.Ш., Соломяк М.З. Спектральная теория самосопряженных операторов в гильбертовом пространстве. Лань, 2010.
Supplementary files


